Энциклопедия двигателя и КПП

Газораспределительный механизм

В задачу этого механизма входит своевременная подача горючей смеси или ее составляющих в цилиндр, а также отвод продуктов горения.

У двухтактных двигателей как такового механизма нет. У него подача смеси и отвод продуктов горения производится технологическими окнами, которые проделаны в стенках гильзы. Таких окон три – впускное, перепускное и выпускное.

Поршень, двигаясь производит открытие-закрытие того или иного окна, этим и выполняется наполнение гильзы топливом и отвод отработанных газов. Использование такого газораспределения не требует дополнительных узлов, поэтому ГБЦ у такого двигателя простая и в ее задачу входит только обеспечение герметичности цилиндра.

У 4-тактного двигателя механизм газораспределения имеется. Топливо у такого двигателя подается через специальные отверстия в головке. Эти отверстия закрыты клапанами. При надобности подачи топлива или отвода газов из цилиндра производится открывание соответствующего клапана. Открытие клапанов обеспечивает распределительный вал, который своими кулачками в нужный момент надавливает на необходимый клапан и тот открывает отверстие. Привод распредвала осуществляется от коленвала.

ГРМ с ременным и цепным приводом

Компоновка газораспределительного механизма может отличаться. Выпускаются двигатели с нижним расположением распредвала (он находится в блоке цилиндров) и верхним расположением клапанов (в ГБЦ). Передача усилия от вала к клапанам производится посредством штанг и коромысел.

Более распространенными являются моторы, у которых и вал и клапана имеют верхнее расположение. При такой компоновке вал тоже размещен в ГБЦ и действует он на клапана напрямую, без промежуточных элементов.

Система питания

Эта система обеспечивает подготовку топлива для дальнейшей подачи его в цилиндры. Конструкция этой системы зависит от используемого двигателем топлива. Основным сейчас является топливо, выделенное из нефти, причем разных фракций – бензин и дизельное топливо.

У двигателей, использующих бензин, имеется два вида топливной системы – карбюраторная и инжекторная. В первой системе смесеобразование производится в карбюраторе. Он производит дозировку и подачу топлива в проходящий через него поток воздуха, далее уже эта смесь подается в цилиндры. Состоит такая система и топливного бака, топливопроводов, вакуумного топливного насоса и карбюратора.

Карбюраторная система

То же делается и в инжекторных авто, но у них дозировка более точная. Также топливо в инжекторах добавляется в поток воздуха уже во впускном патрубке через форсунку. Эта форсунка топливо распыляет, что обеспечивает лучшее смесеобразование. Состоит инжекторная система из бака, насоса, расположенного в нем, фильтров, топливопроводов, и топливной рампы с форсунками, установленной на впускном коллекторе.

У дизелей же подача составляющих топливной смеси производится раздельно. Газораспределительный механизм через клапаны подает в цилиндры только воздух. Топливо же в цилиндры подается отдельно, форсунками и под высоким давлением. Состоит данная система из бака, фильтров, топливного насоса высокого давления (ТНВД) и форсунок.

Отличие дизельного двигателя от бензинового

Недавно появились инжекторные системы, которые работают по принципу дизельной топливной системы – инжектор с непосредственным впрыском.

Система отвода отработанных газов обеспечивает вывод продуктов горения из цилиндров, частичную нейтрализацию вредных веществ, и снижение звука при выводе отработанного газа. Состоит из выпускного коллектора, резонатора, катализатора (не всегда) и глушителя.

Принцип работы

При сгорании горючей смеси, состоящей из легковоспламеняемых продуктов и воздуха, выделяется больше количество энергии. Причем в момент воспламенения смеси она значительно увеличивается в объеме, возрастает давление в эпицентре воспламенения, по сути, происходит маленький взрыв с высвобождением энергии. Этот процесс и взят за основу.

Если сгорание будет производиться в закрытом пространстве – возникающее при сгорании давление будет давить на стенки этого пространства. Если одну из стенок сделать подвижной, то давление, пытаясь увеличить объем замкнутого пространства, будет перемещать эту стенку. Если к этой стенке присоединить какой-нибудь шток, то она уже будет выполнять механическую работу – отодвигаясь, будет толкать этот шток. Соединив шток с кривошипом, при перемещении он заставит провернуться кривошип относительно своей оси.

В этом и заключается принцип работы силового агрегата с внутренним сгоранием – имеется закрытое пространство (гильза цилиндра) с одной подвижной стенкой (поршнем). Стенка штоком (шатуном) связана с кривошипом (коленчатым валом). Затем производится обратное действие – кривошип, делая полный оборот вокруг оси, толкает штоком стенку и так возвращается обратно.

Но это только принцип работы с пояснением на простых составляющих. На деле же процесс выглядит несколько сложнее, ведь надо же вначале обеспечить поступление смеси в цилиндр, сжать ее для лучшего воспламенения, а также вывести продукты горения. Эти действия получили название тактов.

Всего тактов 4:

  • впуск (смесь поступает в цилиндр);
  • сжатие (смесь сжимается за счет уменьшения объема внутри гильзы поршнем);
  • рабочий ход (после воспламенения смесь из-за своего расширения толкает поршень вниз);
  • выпуск (отведение продуктов горения из гильзы для подачи следующей порции смеси);

Такты поршневого двигателя

Из этого следует, что полезное действие имеет только рабочий ход, три других – подготовительные. Каждый такт сопровождается определенным перемещением поршня. При впуске и рабочем ходе он движется вниз, а при сжатии и выпуске – вверх. А поскольку поршень связан с коленчатым валом, то каждый такт соответствует определенному углу проворота вала вокруг оси.

Реализация тактов в двигателе делается двумя способами. Первый – с совмещением тактов. В таком моторе все такты выполняются за один полный проворот коленвала. То есть, пол-оборота колен. вала, при котором выполняется движение поршня вверх или вниз сопровождается двумя тактами. Эти двигатели получили название 2-тактных.

Второй способ – раздельные такты. Одно движение поршня сопровождается только одним тактом. В итоге, чтобы произошел полный цикл работы – требуется 2 оборота колен. вала вокруг оси. Такие двигатели получили обозначение 4-тактных.

Блок цилиндров

Теперь само устройство двигателя внутреннего сгорания. Основой любой установки является блок цилиндров. В нем и на нем располагаются все составные.

Конструктивные особенности блока зависят от некоторых условий – количества цилиндров, их расположения, способа охлаждения. Количество цилиндров, которые объедены в одном блоке, может варьироваться от 1 до 16. Причем блоки с нечетным количеством цилиндров встречаются редко, из выпускающихся ныне двигателей можно встретить только одно- и трехцилиндровые установки. Большинство же агрегатов идут с парным количеством цилиндров – 2, 4, 6, 8 и реже 12 и 16.

Четырёхцилиндровый блок

Силовые установки с количеством от 1 до 4 цилиндров обычно имеют рядное расположение цилиндров. Если количество цилиндров больше, их располагают в два ряда, при этом с определенным углом положения одного ряда относительно другого, так называемые силовые установки с V-образным положением цилиндров. Такое расположение позволило уменьшить габариты блока, но при этом изготовление их сложнее, чем рядным расположением.

Восьмицилиндровый блок

Существует еще один тип блоков, в которых цилиндры располагаются в два ряда и с углом между ними в 180 градусов. Эти двигатели получили название оппозитных. Встречаются они в основном на мотоциклах, хотя есть и авто с таким типом силового агрегата.

Но условие количеством цилиндров и их расположением – необязательное. Встречаются 2-цилиндровые и 4-цилиндровые двигатели с V-образным или оппозитным положением цилиндров, а также 6-цилиндровые моторы с рядным расположением.

Используется два типа охлаждения, которые применяются на силовых установках – воздушное и жидкостное. От этого зависит конструктивная особенность блока. Блок с воздушным охлаждением менее габаритный и конструктивно проще, поскольку цилиндры не входят в его конструкцию.

Блок с жидкостным же охлаждением более сложен, в его конструкцию входят цилиндры, а поверх блока с цилиндрами расположена рубашка охлаждения. Внутри ее циркулирует жидкость, отводя тепло от цилиндров. При этом блок вместе рубашкой охлаждения представляют одно целое.

Сверху блок накрывается специальной плитой – головкой блока цилиндров (ГБЦ). Она является одной из составляющих, обеспечивающих закрытое пространство, в котором производится процесс горения. Конструкция ее может быть простая, не включающая дополнительные механизмы, или же сложная.

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм, входящий в конструкцию мотора, обеспечивает преобразование возвратно-поступательного перемещения поршня в гильзе во вращательное движение коленвала. Основным элементом этого механизма является коленвал. Он имеет подвижное соединение с блоком цилиндров. Такое соединение обеспечивает вращение этого вала вокруг оси.

К одному из концов вала прикреплен маховик. В задачу маховика входит передача крутящего момента от вала дальше. Поскольку у 4-тактного двигателя на два оборота коленвала приходится только один полуоборот с полезным действием – рабочий ход, остальные же требуют обратного действия, которое и выполняется маховиком. Имея значительную массу и вращаясь, за счет своей кинетической энергии он обеспечивает провороты колен. вала во время подготовительных тактов.

Устройство маховика

Окружность маховика имеет зубчатый венец, при помощи его выполняется запуск силовой установки.

С другой стороны вала размещается приводная шестерня масляного насоса и газораспределительного механизма, а также фланец для крепления шкива.

Этот механизм также включает шатуны, которые обеспечивают передачу усилия от поршня к коленвалу и обратно. Крепление к валу шатунов тоже производится подвижно.

Поверхности блока цилиндров, колен. вала и шатунов в местах соединения напрямую между собой не контактируют, между ними находятся подшипники скольжения – вкладыши.

Современные разработки

Основной задачей, над которой бьются автопроизводители – это снижение потребление топлива и выбросов вредных веществ в атмосферу. Поэтому они постоянно улучшают систему питания, результатом является недавнее появление инжекторных систем с непосредственным впрыском.

Ищутся альтернативные виды топлива, последней разработкой в этом направлении пока является использование в качестве топлива спиртов, а также растительных масел.

Также ученые пытаются наладить производство двигателей с совершенно иным принципом работы. Таковым, к примеру, является двигатель Ванкеля, но особых успехов пока нет.

Новый мотор, работающий на дизельном и бензиновом топливе одновременно.

Кто сказал, что двигатель внутреннего сгорания изжил себя и что ему пришло время уходить на пенсию, уступив автомир электрическим автомобилям? Например, как недавно показали компании Mazda и Infiniti, создав новые инновационные двигатели внутреннего сгорания, ДВС еще рано списывать со счетов. Дело в том, что в двигателе внутреннего сгорания еще осталось много места для новых изобретений и инноваций. Не верите?

Тогда посмотрите ролик об одном самом невероятном экспериментальном двигателе, который использует реакционноспособное компрессионное воспламенение (RCCI). И вполне возможно, эта система – святой Грааль для двигателей внутреннего сгорания. Почему? Да все дело в том, что этот инновационный опытный мотор в своей работе использует два вида топлива одновременно: бензин и солярку. Благодаря невероятной технологии ему удается достигать невероятного уровня экономичности. 

В настоящий момент этот инновационный движок существует только на испытательном стенде. Но, к счастью, о нем есть уже немало информации, которую воедино собрал популярный на Западе видеоблогер-инженер Джейсон Фенске.

Мотор, который работает одновременно на дизельном и бензиновом топливе, разработан Университетом Висконсина-Мэдисона. Этот университет в лабораторных тестах нового мотора смог достичь 60 процентов топливной эффективности.

Это означает, что новый инновационный мотор с системой RCCI преобразует 60 процентов своего топлива в используемую энергию, а не в отработанную, как в большинстве сегодняшних двигателей внутреннего сгорания, серийно производимых во всем мире. 

Много это или мало? Вот пример с новым эффективным мотором Toyota. Речь идет об их новейшем четырехцилиндровом двигателе «Dynamic Force», который достигает 40-процентной тепловой эффективности. В новом же моторе, который используется в Mercedes-AMG F1, тепловая эффективность двигателя составляет 50 процентов. Так что сами понимаете, что 60 процентов эффективности – это невероятный шаг вперед в будущее для ДВС, которые уже начали списывать со счетов. Оказалось, еще рано. 

Двигатель RCCI использует два топливных инжектора на один цилиндр для смешивания топлива с низкой реакционной способностью (бензин) с топливом с высокой реакционной способностью (например, дизельным топливом). Теоретически все могли бы смешать любые виды топлива с низкой и высокой реактивностью для двигателя с системой RCCI. Но бензин и солярка – пожалуй, самое интересное сочетание. 

Сам процесс сжигания топлива в инновационном двигателе также уникален и увлекателен, как и впрыск. Итак, сначала смесь бензина и воздуха поступает в камеру сгорания. Затем в камеру сгорания начинает поступать дизельное топливо. В результате бензин и солярка смешиваются. Далее, когда поршень начинает двигаться вверх, приближаясь к верхней мертвой точке, в этот момент для зажигания подается еще немного дизельного топлива. 

Этот двигатель более экономичен, чем обычный дизельный мотор. Также он за счет использования бензина намного чище классического дизельного силового агрегата. В итоге новый мотор больше похож на идеальный двигатель внутреннего сгорания. Кстати, эта идея не нова. Еще в 20 веке в автопромышленности было несколько попыток создать ДВС, работающие на двух видах топлива: солярке и бензине.

Так почему же сегодня подобные моторы еще не устанавливаются массово на современные автомобили? Все дело в несовершенстве некоторых технологий. И вот только в 21 веке реально стало возможным создать такой двигатель, который будет работать безотказно и иметь неплохой ресурс, ничем не уступающий обычным силовым агрегатам. Правда, к сожалению, для запуска серийного производства этот мотор должен еще пройти немало различных тестов и испытаний. 

Кроме того при использовании двигателя, работающего на дизтопливе и на бензине, есть проблема, связанная с двумя раздельными системами заправки автомобиля, что в определенных случаях очень неудобно.

В том числе этот мотор, умеющий работать на бензине и солярке одновременно, все еще находится в стадии концепции и не является даже предсерийным образцом. Так что говорить о том, что уже совсем скоро в автопромышленности начнут серийно выпускать подобные силовые агрегаты, еще рано. 

Итак, вот подробный рассказ блогера-инженера Фенске, который разобрал технологию этого мотора и простым языком объяснил принцип его работы. К сожалению, ролик англоязычный. Но вы можете частично понять, о чем идет речь, включив субтитры к видео, а также их машинный перевод. 

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий