Дизельные двигатели
Дизельный мотор — это вид двигателя, который расходует как горючее дизельное топливо. Основные системы и элементы движка идентичны бензиновому брату, различие состоит в системе впрыска и воспламенении смеси. В дизельном моторе отсутствуют свечи зажигания, поскольку воспламенение смеси от искры не нужно.
На моторах такого типа устанавливаются свечи накала, которые разогревают воздух в камере сгорания, который превышает температуру воспламенения. После этого через форсунки подаётся распылённое топливо, которое сгорает, чем создаёт достаточное давление для привода в движения поршня, который раскручивает коленчатый вал.
Первичные двигатели
Описание и классификация
Суть первичных сводится к тому, что необходимая энергия вырабатывается из природных источников, которые поставляются в специальное устройство, где и происходит преобразование, а, точнее, в большинстве случаев, сжигание.
Двигатели Стирлинга
Приблизительно через 30 лет после того, как Уайт усовершенствовал свой паровой механизм, шотландец Стирлинг разработал иную конструкцию, которая в принципе являлась устройством внешнего сгорания. Её принцип заключался в том, что нагревание и охлаждение рабочих объёмов элемента происходит в отдельных камерах. Осуществляется этот процесс через стенку, поэтому такая изолированность позволяет работать независимо от природы нагревателя и охладителя. А это, в свою очередь, способствует, чтобы использовать такие механизмы внешнего сгорания, разработанные Стирлингом в самых разных условиях эксплуатации. В том числе и в космосе.
Паровая турбина
Паровые турбины по своим конструктивным особенностям представляют собой крыльчатку, то есть колесо с крольчатами лопастями, которые вращаются под воздействием какой-либо среды. Несмотря на то что прототипы таких движущих элементов были предложены ещё в ранний период развития человечества, найти отражение в различных машинах и механизмах они смогли только в середине XIX века. Дело в том, что только в этот период стали интенсивно развиваться различные конструкционные материалы, которые позволили реализовать данный тип. Ведь далеко не каждый материал мог вынести интенсивную скорость вращения до нескольких тысяч оборотов в минуту.
Двигатель внутреннего сгорания
Двигатель внутреннего сгорания, а точнее, его первый прототип был предложен ещё Гюйгенсом в далёком XVII веке. Тогда, в качестве активизирующей силы предлагалось использовать порох. Но попытки так и остались лишь разработками. Первый, основанный на внутреннем сгорании возник в 1860 году. Его автором стал Ленуар, который в качестве топлива использовал газ.
Далее разработка продолжила совершенствоваться и через несколько десятилетий в Германии был предложен усовершенствованный четырёхтактный двигатель внутреннего сгорания.
Паровые машины
В середине XVII века появились первые прототипы паровых машин. Они на протяжении 100 лет усовершенствовались и видоизменялись. И только когда к концу XVIII века Джеймс Уайт создал более совершённый прототип, он получил название универсального парового. Именно его изобретением является поршень двойного хода, центробежный предохранитель, а также автоматическая коробка с клапанным принципом работы, устранившие монотонную тяжёлую работу оператора, который должен был постоянно переключает рычаги для подачи воды и пара.
Плавность работы на машине Уайта обеспечивал кривошипно-шатунный механизм. Таким образом, английский механик внёс достаточно большой вклад в развитие паровых конструкций. Его полная конструкция, а также отдельные элементы в дальнейшем входили во все паровые машины.
Дизель
Двигатели, которые работают на дизельном топливе, тоже появились достаточно давно. Несмотря на то, что предки современных дизелей достаточно сильно конструктивно отличались от бензиновых агрегатов, общий принцип работы сохранился и лишь многократно совершенствовался.
Преимуществ разновидностей можно отметить всего несколько. Первое из них – это потрясающая экономичность.
Еще одно неоспоримое преимущество дизельного ДВС – это большой ресурс работы. Практика применения коммерческого транспорта, который проходит достаточно большие пробеги, показала, что без капитального ремонта мотор способен пройти порядка 600 тысяч километров. Правда, и сам ремонт будет стоить весьма недешево: это является главным недостатком подобного типа моторов.
Двигатель автомобиля
Двигатель – самая важная из систем автомобиля. Без двигателя нет движения, а следовательно нет автомобиля. По аналогии со строением человека, двигатель – сердце автомобиля. В соответствии с предназначением двигатель является источником механической энергии, необходимой для движения автомобиля. Для того, чтобы получить механическую энергию, в двигателе автомобиля преобразуется другой вид энергии (энергия сгорания топлива, электрическая энергия и др.). Источник энергии при этом должен находиться непосредственно на автомобиле и периодически пополняться.
Передача механической энергии от двигателя на ведущие колеса осуществляется через трансмиссию. Конструктивное объединение двигателя и трансмиссии носит устоявшееся название силовая установка.
В зависимости от вида преобразуемой энергии различают следующие основные виды автомобильных двигателей: двигатели внутреннего сгорания (ДВС), электродвигатели, комбинированные двигатели (гибридные силовые установки).
Двигатель внутреннего сгорания преобразует химическую энергию сгорающего топлива в механическую работу. Известными типами ДВС являются поршневой, роторно-поршневой и газотурбинный двигатели. На современных автомобилях наибольшее распространение получили поршневые двигатели внутреннего сгорания, использующие в качестве источника энергии жидкое топливо (бензин, дизельное топливо) или природный газ.
Автомобиль, использующий в качестве двигателя электродвигатель, называется электромобилем. Для работы электродвигателя требуется электрическая энергия, источником которой могут быть аккумуляторные батареи или топливные элементы. Основным недостатком электромобилей, ограничивающим их широкое применение, является небольшая емкость источника электрической энергии и соответственно низкий запас хода.
Гибридная силовая установка объединяет двигатель внутреннего сгорания и электродвигатель, связь которых осуществляется через генератор. Передача энергии на ведущие колеса в гибридном автомобиле может производиться последовательно (ДВС – генератор – электродвигатель – колесо) или параллельно (ДВС – трансмиссия – колесо и ДВС – генератор – электродвигатель – колесо). Предпочтительной является параллельная компоновка гибридной силовой установки.
Источник
Основные технические параметры ДВС
Двигатели внутреннего сгорания также имеют целый ряд характеристик и параметров, которые закладываются конструктивно. Если просто, речь идет о рабочем объеме, степени сжатия, мощности и крутящем моменте и т.д.
Наибольший интерес для рядового обывателя, конечно же, представляет мощность и моментная характеристика. Крутящий момент, который создается на коленчатом валу, фактически указывает на то, какая сила тяги будет передаваться на колеса.
Естественно, чем большим окажется показатель крутящего момента, тем большей будет тяга. Другими словами, от данного показателя зависит разгонная динамика. Что касается мощности двигателя, это величина, которая отображает произведенную работу за единицу времени.
Увеличение крутящего момента и мощности возможно посредством двух способов:
- больший рабочий объем;
- сжигание большего количества топливно-воздушной смеси;
Если просто, в первом случае речь идет о физическом увеличении камеры сгорания и объема цилиндров. Во втором подразумевается принудительная подача воздуха в цилиндры под давлением для сжигания большего количества топлива.
Как правило, мощные двигатели с большим объемом атмосферные, то есть «засасывают» наружный воздух в цилиндры самостоятельно благодаря возникающему разрежению от движения поршней. Мощные агрегаты, при этом обладающие меньшим объемом, оснащаются механическими компрессорами или турбонаддувом. В таких ДВС воздух нагнетается принудительно, то есть поступает в камеру сгорания под давлением.
Устройство ДВС
Конструктивно двигатели делят, с учетом устройства и компоновки техники, на которой они установлены. Но сохраняются неизменными принципы, одинаковые для конструкции любого ДВС.
Двигатель комплектуется такими конструктивными узлами:
- блоком цилиндров – основной частью корпуса с проемами для рабочих камер, рубашкой охлаждения (для моторов, охлаждаемых жидкостью), крепежными отверстиями для установки головок и картера, посадочными местами для коленчатого вала и прочими конструктивными элементами;
- кривошипно-шатунной группой – с коленчатым валом, к которому крепятся шатуны, приводящие в действие поршни, двигающиеся внутри цилиндров; инерция вращения поддерживается маховиком;
- газораспределительным механизмом – системой, подающей в камеры сгорания топливо-воздушную смесь, с отводом выхлопа; включает распределительный вал, клапана, приводимые в действие коромыслами, ремнем или цепью, соединенными с коленвалом;
- топливной системой – подает горючее в камеры сгорания, после обогащения воздухом; включает бак, систему трубок для подвода питающей жидкости, карбюратора или инжектора (с учетом особенностей конструктивного устройства), форсунок, насоса, фильтрующего элемента;
- смазочной системой – с подачей смазки к трущимся деталям; включает масляный насос, приводящийся коленчатым валом, систему патрубков и полостей, фильтр и поддон; предусмотрено устройство «сухого» или «мокрого» картера;
- системой зажигания – для поджигания топливно-воздушной смеси; используется только на бензиновых двигателях, поскольку на дизельных моторах топливо с воздухом воспламеняется самостоятельно, при определенном давлении;
- системой охлаждения – может быть воздушной или жидкостной, для снижения температуры корпуса мотора, чтобы предупредить износ и выход из строя элементов;
- электросистемой – источником электроэнергии, необходимой для работы мотора; включает аккумуляторную батарею, генераторный блок, стартер и проводку с датчиками;
- системой выхлопа – для удаления продуктов сгорания в атмосферу, с доочисткой этой смеси, снижением шума от работы двигателя, фильтрующим элементом.
Конструкция узлов совершенствуется, по мере появления новых материалов и конструктивных решений.
С учетом особенностей конструктивного устройства различных элементов двигателей, важно учитывать такие моменты:
- цилиндры могут выполняться отдельно, с запрессовкой в корпус блока, или совместно с корпусом; моноблочные системы не предусматривают восстановления, в связи с тем, что нельзя заменить гильзу;
- корпуса двигателей изготавливают из сплавов чугуна или алюминия, устойчивых к перепадам температуры и высокому давлению;
- головка блока цилиндров выполняется с ним совместно или в виде отдельной детали; при раздельном исполнении возможно использование разных материалов для головки и блока цилиндров;
- работа кривошипно-шатунного механизма может уравновешиваться балансирными валами, расположенными по сторонам от коленвала и нивелирующими влияние инерционных сил; в результате снижается вибрация и шум, исключаются перегрузки двигателя;
- негативное влияние пружин при быстрой работе двигателя с механическим газораспределительным механизмом снижается за счет десмодромной системы управления мотором – со сложной конфигурацией кулачков;
- зависание клапанов исключается легкими материалами для изготовления этих деталей и пружинных элементов, пневматическим приводом;
- альтернатива традиционной конструкции ГРМ – гильзовый способ, разработанный Найтом; предусматривает использование взамен клапанов скользящих гильз, работающих бесшумно и долговечно; этот способ перестали использовать по причинам большого расхода смазочной жидкости, с разработкой верхнеклапанной конструкции;
- ранние модели двигателей комплектовались не стартерами, а генераторами переменного тока (магнето), приводимыми в действие коленчатым валом; это требовало прокручивания вала двигателя для запуска;
- вредное воздействие на экологию выхлопных газов частично снижается каталитическим нейтрализатором, окисляющим и химически преобразовывающим выхлоп;
- электронные системы дополнительно улучшают работу двигателя; изменение фаз газораспределения изменяет нагрузку на мотор, с учетом включенной передачи, снижая потребление горючего; дезактивация цилиндров регулирует объем камер сжатия, отключая ненужные цилиндры; регулировка степени сжатия изменяет объем камер сгорания, с учетом режимов работы мотора.
Эти и другие особенности конструктивно улучшили работу двигателей внутреннего сгорания.
Бензиновый двигатель
Бензиновый двигатель — это ДВС средством питания, которого является бензин. Горючее подаётся с топливного бака при помощи насоса (механического или электрического) на систему впрыска. Итак, рассмотрим, какие бывают типы бензиновых моторов:
- С карбюратором.
- Инжекторного типа.
Карбюраторная система впрыска
Карбюратор — это тип впрыскового устройства горючего во впускной коллектор с дальнейшим распределением по цилиндрам. Первый примитивный карбюратор был разработан в Германии ещё в конце 19 века и имеет почти 100 летнюю историю развития.
Принцип работы карбюратора достаточно простой: бензонасос подаёт топливо в поплавковую камеру, где бензин проходит сквозь жиклёры механическим путём (количество впрыскиваемого топлива регулирует водитель при помощи педали акселератора), и подаётся во впускной коллектор. Недостатком карбюратора стало то, что он чувствительный к регулировкам, а также не соответствует экологическим международным нормам.
Инжектор
Инжекторный двигатель — это тип впрыскового устройства горючего в цилиндры двигателя. Инжекторный впрыск бывает моно и разделённым Данная система на сегодняшний день все больше совершенствуется, чтобы уменьшит выбросы СО2 в атмосферу. Для впрыска используются форсунки, которые ещё ранее начали использоваться на дизельных двигателях.
С переходом на данную систему транспортные средства стали оснащать электронными блоками управления двигателем, чтобы корректировать состав воздушно-топливной смеси, а также сигнализировать о неисправностях внутри системы.
Обзор основных деталей
Цилиндр двигателя
Основная деталь цилиндра двигателя – гильза. Существуют гильзы двух типов:
впрессованные гильзы, (в алюминиевом блоке);
съёмные гильзы – они бывают «мокрыми» и «сухими».
Головка блока цилиндров двигателя – ГБЦ
Она закреплена сверху конструкции направляющими шпильками и болтами крепления ГБЦ. Очень важная деталь – прокладка блока, она расположена между ГБЦ и самим блоком. Изготавливают ее из асбестометалла, металла, а может быть безасбестовой.
Головка блока цилиндров двигателя состоит из: камеры сгорания, мест крепления ГРМ, рубашки охлаждения, каналов для смазки, резьбовых отверстий свечей (форсунок), отверстий впускных и выпускных каналов.
Отдельно стоит упомянуть технологию крепления ГБЦ. Для этого используются специальные болты крепления, а сама операция выполняется согласно инструкциям производителя.
В частности затягивать головку нужно динамометрическим ключом с соблюдением момента затяжки и пользуясь схемой затяжки болтов.
Картер двигателя
Картер считается частью блока, и крепится к нему снизу. Закрывается поддоном. То есть, картер – можно назвать корпусом кривошипно-шатунного механизма.
В
корпусе блока цилиндров также есть отверстия и каналы для смазки и охлаждения. Сливная пробка нужна, чтобы осуществить слив охлаждающей жидкости.
Моторное масло, сливается после извлечения пробки в поддоне картера. Предусмотрено место для привода распределительного вала.
Спереди оно закрыто крышкой блока цилиндров. Внизу размещены опоры коренных подшипников коленчатого вала.
Теперь, когда вы сами познакомились с конструкцией блока цилиндров двигателя, поделитесь новыми знаниями с друзьями в соц.сетях. Пусть тоже подпишутся на наш блог, и знакомятся с увлекательным миром автотехники.
Рекомендует еще посмотреть статейки про Шатун, Поршень и Коленчатый вал. Интересно.
Источник
Принцип работы
Машина с ДВС (двигателем) должна ездить, а для этого ей необходимо совершить механическое усилие. Именно его и производит двигатель, который передает вращательную силу на колеса автомобиля. Те вращаются, и транспортное средство начинает движение. Это очень примитивное объяснение, которое позволит лишь отдаленно понять, что это такое – ДВС в машине. Главная цель двигателя – преобразование бензина (или дизельного топлива) в механическое движение. Сегодня самый простой способ заставить автомобиль двигаться – это сжечь топливо внутри мотора. Именно поэтому двигатель внутреннего сгорания получил соответствующее название. Все они работают по одинаковому общему принципу, хотя есть некоторые разновидности: дизельные, с карбюраторными или инжекторными системами питания и так далее.
Итак, принцип мы поняли: топливо сгорает, высвобождает при этом большие объемы энергии, которые толкают механизмы в двигателе, что приводит к вращению коленчатого вала. Усилия затем передаются на колеса, и машина начинает движение.
Принцип работы четырехтактного двигателя
Такты четырехтактного двигателя
Четырехтактные двигатели используются во всех автомобилях, крупной технике, авиации
Это так называемый классический вид ДВС, которому конструкторы уделяют всё свое внимание. Условно работу каждого цилиндра в ЦПГ можно разделить на 4 этапа (такта)
Это впуск, сжатие, сгорание, выпуск. На видео, ниже, наглядно показано работу 4-тактного двигателя в 3Д анимации.
- На такте впуска поршень в цилиндре движется вниз, от клапанов к нижней мертвой точке (НМТ). Когда он начинает опускаться, открывается впускной клапан и в цилиндр поступает топливно-воздушная смесь (или только воздух, если двигатель с непосредственным впрыском). При движении поршень сам «накачивает» нужный объем воздуха в камеру сгорания, если двигатель атмосферный, или воздух поступает под напором, если установлен турбонаддув.
- Дойдя до нижней мертвой точки поршень начинает подниматься. При этом впускной клапан закрывается, и при движении поршень сжимает воздух с распыленным в нём топливом до критического давления.
- Как только поршень условно доходит до верхней мертвой точки и компрессия становится максимальной, срабатывает свеча зажигания и топливо вспыхивает (дизтопливо зажигается при сжатии само, без искры). Микровзрыв от вспышки толкает поршень снова вниз, к НМТ.
- И на четвертом такте открывается выпускной клапан. Поршень снова движется вверх, выдавливая из камеры сгорания выхлопные газы в выпускной коллектор.
Работа четырехтактного двигателя
По сути, полезной работы в двигателе только один такт из четырех, когда при сгорании топлива создается избыточное давление, толкающее поршень. Остальные три такта нужны как вспомогательные, которые не дают импульса к движению, но на них расходуется энергия.
При таких условиях двигатель мог бы остановиться, когда кривошипно-шатунный механизм (КШМ) приходит к энергетическому равновесию. Но чтобы этого не произошло, используется большой маховик, соединенный с системой сцепления, и противовесы на коленвале, уравновешивающие нагрузки от работы поршней.
Принцип работы двухтактного двигателя
Такты двухтактного двигателя
Двухтактные двигатели используются не слишком широко. В основном это моторы скутеров и мопедов, легких моторных лодок, газонокосилок. Весь рабочий процесс такого двигателя можно разделить на два основных этапа:
- В начале движения поршня снизу вверх (от нижней мертвой точки к верхней) в камеру сгорания поступает топливно-воздушная смесь. Поднимаясь, поршень сжимает ее до критической компрессии, и когда он находится в верхней мертвой точке, происходит поджиг.
- Сгорая, топливо толкает поршень вниз, при этом одновременно открывается доступ к выпускному коллектору и продукты сгорания выходят из цилиндра. Как только поршень достигает нижней мертвой точки (НМТ), повторяется первый такт – впуск и сжатие одновременно.
Работа двухтактного двигателя
Казалось бы, двухтактный двигатель должен быть вдвое эффективней четырехтактного, ведь здесь на полезное действие приходится половина работы. Но в реальности мощность двухтактного двигателя намного ниже, чем хотелось бы, и причина этого кроется в несовершенном механизме газораспределения.
При сгорании топлива часть энергии уходит в выпускной коллектор, не выполняя никакой работы кроме нагрева. В итоге, двухтактные двигатели применяются только в маломощном транспорте и требуют особых моторных масел.
Из истории
Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.
В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.
Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.
Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.
Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.
В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.
Характеристики двигателей
При одних и тех же конструктивных параметрах у разных двигателей такие показатели, как мощность, крутящий момент и удельный расход топлива, могут отличаться. Это связано с такими особенностями, как количество клапанов на цилиндр, фазы газораспределения и т. п. Поэтому для оценки работы двигателя на разных оборотах используют характеристики — зависимость его показателей от режимов работы. Характеристики определяются опытным путем на специальных стендах, так как теоретически они рассчитываются лишь приблизительно.
Как правило, в технической документации к автомобилю приводятся внешние скоростные характеристики двигателя (рис. 4), определяющие зависимость мощности, крутящего момента и удельного расхода топлива от числа оборотов коленвала при полной подаче топлива. Они дают представление о максимальных показателях двигателя.
Показатели двигателя (упрощенно) изменяются по следующим причинам. С увеличением числа оборотов коленвала растет крутящий момент благодаря тому, что в цилиндры поступает больше топлива. Примерно на средних оборотах он достигает своего максимума, а затем начинает снижаться. Это происходит из-за того, что с увеличением скорости вращения коленвала начинают играть существенную роль инерционные силы, силы трения, аэродинамическое сопротивление впускных трубопроводов, ухудшающее наполнение цилиндров свежим зарядом топливо-воздушной смеси, и т. п.
Быстрый рост крутящего момента двигателя указывает на хорошую динамику разгона автомобиля благодаря интенсивному увеличению силы тяги на колесах. Чем дольше величина момента находится в районе своего максимума и не снижается, тем лучше. Такой двигатель более приспособлен к изменению дорожных условий и реже придется переключать передачи.
Мощность растет вместе с крутящим моментом и даже, когда он начинает снижаться, продолжает увеличиваться благодаря повышению оборотов. После достижения максимума мощность начинает снижаться по той же причине, по которой уменьшается крутящий момент. Обороты несколько выше максимальной мощности ограничивают регулирующими устройствами, так как в этом режиме значительная часть топлива расходуется не на совершение полезной работы, а на преодоление сил инерции и трения в двигателе. Максимальная мощность определяет максимальную скорость автомобиля. В этом режиме автомобиль не разгоняется и двигатель работает только на преодоление сил сопротивления движению — сопротивления воздуха, сопротивления качению и т. п.
Величина удельного расхода топлива также меняется в зависимости от оборотов коленвала, что видно на характеристике (см. рис. 4). Удельный расход топлива должен находиться как можно дольше вблизи минимума; это указывает на хорошую экономичность двигателя. Минимальный удельный расход, как правило, достигается чуть ниже средних оборотов, на которых в основном и эксплуатируется автомобиль при движении в городе.