Постоянные, переменные и подстрочные резисторы
Постоянный резистор — это деталь с двумя выводами, которая вносит в электрическую цепь постоянное сопротивление.
Постоянный резистор представляет собой стержень из диэлектрического материала (чаще всего из керамики) на поверхности которой нанесена токопроводящая пленка из углерода или металлического сплава.
На торцы стержня плотно насажены «чашечки», переходящие в проволочные выводы. Чем тоньше плёнка, тем больше сопротивление.
На поверхность стержня могут наноситься канавки, увеличивающие сопротивление. Резистор с небольшим значением сопротивления может представлять собой керамическое основание с намотанным на него тонким проводом.
Для защиты резистивного слоя сверху наносится слой компаунда или лака, поверх которого наносится буквенно-цифровая маркировка или маркировка в виде нескольких цветных колец.
Раньше выводы резисторов в большинстве случаев были медными. Теперь же часто основу этих выводов составляет железо (которое дешевле меди).
Очень часто возникает задача изменить вносимое в электрическую цепь сопротивление. Это задачу выполняют переменные или подстроечные резисторы, у которых три (или более) вывода.
Переменные резисторы отличаются тем, что токопроводящий слой на них нанесен виде подковы, к концам которой подключены два неподвижных вывода.
Третий вывод – подвижный — скользит по подкове, поэтому при перемещении его сопротивление между ним и крайними выводами меняется.
Положение подвижного вывода можно менять посредством соединенной с ним вращающейся рукоятки.
Подстроечный резистор отличается от переменного тем, что в нем труднее повернуть рукоятку.
Часто в рукоятке подстроечного резистора делают прорези под шлиц отвертки.
Иногда после регулировки электрической схемы рукоятку заливают компаундом или полиэтиленом — чтобы невозможно было ее повернуть и сбить настройку.
Кстати, регулятор громкости в ваших настольных акустических системах – это переменный резистор.
Работа системы охлаждения Лады Калины
Под маркой Калина ВАЗ выпускает серию моделей автомобилей с разной комплектацией кузовов, оснащённых инжекторными двигателями с 8 клапанами. На всех машинах располагается одинаковая стандартная система охлаждения, схема которой изображена ниже.
Схема системы охлаждения двигателя:
Обозначения по схеме:
- 1 — радиатор печки;
- 2 — расширительный бачок;
- 3 — воздушный клапан;
- 4 — термостат;
- 5 — датчик включения вентилятора;
- 6 — вентилятор;
- 7 — защитная панель;
- 8 — крышка картера;
- 9 — помпа;
- 10 — кран печки;
- 11 — шланг;
- 12 — хомут;
- 13 — прокладка;
- 14 — забор воздуха;
- 15 — горячий воздушный поток от печки.
Система охлаждения имеет два контура: большой и малый. Пока двигатель прогревается, термостат пускает антифриз по малому кругу: помпа — рубашка двигателя — расширительный бачок. Когда температура тосола достигнет нужного значения, термостат открывает большой контур через радиатор. Когда стрелка температуры на панели приборов перейдёт в зелёную зону, автомобиль будет готов к движению. В случае сильного холодного встречного воздушного потока, термостат будет постепенно перекрывать поступление тосола в радиатор и наоборот, при поднятии температуры устройство будет больше открываться. При достижении нагрева антифриза точки равной 950С, вступает в работу датчик включения вентилятора.
Виды резисторов
Виды резисторов можно разбить на следующие категории:
- Нерегулируемые (постоянные) — проволочные, композитные, пленочные, угольные и др.
- Регулируемые (переменные и подстроечные). Подстроечные резисторы предназначены для настройки электрических цепей. Элементы с переменным сопротивлением (потенциометры) применяются для регулировки уровней сигнала.
Отдельную группу представляют полупроводниковые резистивные элементы (терморезисторы, фоторезисторы, варисторы и пр.)
Характеристики резисторов определяются их назначением и задаются при изготовлении. Среди ключевых параметров:
- Номинальное сопротивление. Это главная характеристика элемента, измеряется в омах (Ом, кОм, МОм).
- Допустимое отклонение в процентах от указанного номинального сопротивления. Означает возможный разброс показателя, определяемый технологией изготовления.
- Рассеиваемая мощность — предельная мощность, которую резистор может рассеивать при долговременной нагрузке.
- Температурный коэффициент сопротивления — величина, показывающая относительное изменение сопротивления резистора при изменении температуры на 1°С.
- Предельное рабочее напряжение (электрическая прочность). Это максимальное напряжение, при котором деталь сохраняет заявленные параметры.
- Шумовая характеристика — степень вносимых резистором искажений в сигнал.
- Влагостойкость и термостойкость — максимальные значения влажности и температуры, превышение которых может привести к выходу детали из строя.
- Коэффициент напряжения. Величина, учитывающая зависимость сопротивления от приложенного напряжения.
Применение резисторов в области сверхвысоких частот придает важность дополнительным характеристикам: паразитной емкости и индуктивности
Как выполнить замену резистора
Как уже говорилось в самом начале, данное устройство находится внутри салона и доступ к нему изначально открыт, а потому замена резистора печки ваз 2114 не вызовет затруднений даже у самого начинающего автолюбителя (к слову, во многих автосервисах за такую простую операцию просят от 1.000 до 1.500 рублей — и именно поэтому выполнять ее лучше всего своими руками).
Производится замена резистора следующим образом:
- Найти резистор над педалью газа и отключить от него колодку (разъем с 3 контактами).
- Выкрутить крепеж.
- Вынуть устройство (поскольку оно находится в открытом состоянии, следует обращаться с ним аккуратно — дабы не повредить вероятно рабочие одиночные резисторы).
- Проверить работоспособность устройства и попытаться выполнить ремонт (в случае полной поломки — заменить на новое).
- Установить дополнительный резистор на место (сборка производится в обратном порядке).
Таким образом, демонтаж и установка резистора печки не вызовет никаких затруднений, а на его ремонт и очистку контактов уйдет не более 15 минут.
Какие инструменты нужно использовать для диагностики
Проверить подпитку разъема движка можно обычной контролькой. Но при проведении полноценной диагностики и выявлении неисправностей высокой степени сложности необходим мультиметр. При наличии знаний по использованию мультиметра можно без проблем измерить питание на разъёмах, проверить сопротивление, что даст возможность выполнения быстрого поиска неполадок в проводках либо констатации проблем с резисторами.
Кроме того, измерение сопротивления и диагностика проводов в этом режиме значительно облегчит поиск короткого замыкания.
Провести диагностику ШИМ-контроллеров электрических управляющих частотой оборотов вентилятора систем можно при помощи осциллографа. Но приобретение этого прибора для диагностики из-за его дороговизны не является целесообразным.
Не лучше ли воспользоваться указанными ниже способами диагностики, которые в большинстве случаев помогут и без дорогих приборов выявить источники неисправностей в вентиляторе печки. Итак, приступим.
Если невозможно запустить вентилятор, такая ситуация возникает из-за:
- изношенности щёток. При выполнении функций обычного движка постоянных токов у вентилятора печки главной проблемой является истирание щёток, с помощью которых вольтаж подводится к коллектору. При сильном истирании медно-графитовых щёток снижается создающее контакт вжимающее пружинное усилие, что в свою очередь приводит к работе вентилятора с переменной частотой. Например, он включается при ударе по передней панели или наездах на дорожные выбоины.
- неисправных электрических цепей управления. Источником проблемы является отпаянные из-за сильного нагрева контакты;
- обрыва в проводах, окисленного контакта;
- перегоревшего предохранительного элемента. При постоянном перегорании предохранителя (после его замены) мастер должен найти участок цепи с коротким замыканием.
Принцип работы переменного резистора
Элемент электрической схемы, сопротивление которого можно изменять от нуля до номинального значения, называется переменным резистором и позволяет вручную плавно регулировать величину сопротивления для обеспечения нормальной работы остальных компонентов электрической схемы.
Устройство
Переменное сопротивление состоит из:
- резистивного элемента, который определяет номинал сопротивления, с припаянными по краям двумя фиксированными выводами для подключения в схему;
- подвижного подпружиненного третьего контакта (ползунка, бегунка), который можно передвигать по металлической или металлизированной дорожке (коллектору), уменьшая или увеличивая сопротивление;
- ручки, которая управляет регулировочным механизмом.
Конструктивное исполнение:
- Поворотный – токопроводящий элемент выполняется в виде кольца (подковы), ползунок перемещается поворотным регулировочным механизмом при помощи специальной ручки. Поворотные резисторы могут быть однооборотные и многооборотные.
- Движковый – величина сопротивления регулируется прямым перемещением ползунка по токопроводящему элементу.
Для чего используется
Регулируемый резистор плавно изменяет параметры электрической цепи непосредственно во время работы.
Применяется во многих электроприборах и бытовых устройствах – в качестве потенциометрических датчиков разного назначения и для регулировки громкости и тембра звука, настройки частоты радиоприема, яркости свечения светодиодов или температуры нагрева простым поворотом ручки-регулятора.
Чем отличается от подстроечного
Подстроечный резистор компактного размера, устанавливается непосредственно на электронной плате и применяется для вывода схемы в нужный режим только на стадии настройки и наладки, после чего фиксируется краской или клеем.
Для регулировки подстроечного сопротивления используется отвертка, которая вставляется в специальный паз регулировочного механизма, связанного с круговым ползунком.
Обозначение на схеме
На электрической принципиальной схеме все резисторы обозначаются прямоугольником. Рядом ставится буква R и число, указывающее сопротивление. Если это постоянный, то внутри прямоугольника могут стоять римские цифры, соответствующие мощности этого элемента в ваттах. При мощности менее 1 Вт применяются следующие условные обозначения:
- одна продольная линия внутри прямоугольника указывает на мощность в 0,5 Вт;
- одна косая линия говорит о мощности в 0,25 Вт;
- две косых — 0,125 Вт;
- три косых — 0,05 Вт.
Для того чтобы можно было отличать один прибор от другого, например, варистор от термистора также используются условные обозначения:
- постоянный резистор обозначается только прямоугольником;
- регулировочный — стрелка перечеркивает прямоугольник, центральный вывод подключается к одному из выводов резистора;
- переменный — к прямоугольнику сверху под прямым углом подходит стрелка, к ней подключаются другие приборы;
- подстроечный — на прямоугольник сверху ложится буква «т», к этому выводу подключаются другие приборы;
- подстроечный, как реостат, центральный вывод соединен с одним из выводов прибора — прямоугольник перечеркивает косая буква «т»;
- термистор (терморезистор) — на прямоугольник под наклоном ложится хоккейная клюшка;
- варистор — обозначается как термистор, но над рабочей поверхностью клюшки ставится буква U;
- фоторезистор — сверху к прямоугольнику подходят две наклонные стрелки.
Неисправности резистора вентилятора охлаждения “Калина”
Работа электровентилятора только на высокой скорости вращения — Главный признак того, что дополнительный резистор вентилятора охлаждения “Калина” неисправен. Электросхема подключения вентиляторов ЛАДА “Калина” предусматривает одновременное включение двух систем обдува:
- электровентилятора охлаждения радиатора;
- электровентилятора охлаждения кондиционера,
Если в какой-то момент времени вращается только один из них, то можно сделать вывод о разрыве цепи питания второго. Тоже происходит, когда электровентилятор радиатора не крутится после нагрева двигателя. Причин такого явления несколько. Это может быть как плохой контакт или обрыв провода, так и неисправность резистора электровентилятора.
Причины неисправности резистора вентилятора “Калина”
Основная причина поломки дополнительного резистора вентилятора “Калина” — перегорание термопредохранителя, который защищает обмотку электродвигателя и цепь питания от перегрузки. В этом случае необходим ремонт или замена резистора вентилятора охлаждения “Калина”. Выполнить работу можно самостоятельно, она не занимает много времени, не требует высокой квалификации или специального инструмента.
Что необходимо для проверки и замены
Для снятия, проверки и ремонта (замены) дополнительного резистора понадобятся:
- омметр;
- крестовая отвертка;
- набор ключей;
- паяльник;
- канифоль;
- припой;
- новый резистор или его часть — термопредохранитель (16А и 180 градусов).
Если на автомобиле установлена защита двигателя (картера), снимать ее лучше с ямы или на подъемнике.
Суть бюджетной доработки стандартных свечей
Алгоритм производства работ достаточно прост:
- Зажимаем стандартную свечу зажигания в тиски.
- В патрон шуруповерта устанавливаем сверло.
- Высверливаем в боковом лепестке отверстие (строго напротив центрального электрода).
Устанавливаем модернизированные изделия в автомобиль.
На заметку! Некоторые «умельцы» «обещают» еще большее повышение интенсивности искрообразования, если сточить часть бокового электрода и скруглить его края. При этом отверстие необходимо сдвинуть в бок, как показано на представленном ниже чертеже.
Для изготовления «тюнинговых» свечей зажигания вам понадобятся следующие инструменты:
- слесарные тиски;
- шуруповерт или электродрель;
- сверло Ø=0,5÷0,8 мм (стоимостью около 15 рублей).
Резистор в цепи
Детали с постоянным сопротивлениям в отечественной номенклатуре обозначаются прямоугольником, внутри которого находится определенное число черт, положение которых соответствует определенному номиналу. В зарубежных схемах их символ имеет зигзагообразную форму.
Переменные варианты отличаются направляющейся к прямоугольнику сверху линией со стрелой. Она демонстрирует опцию регуляции сопротивления. Иногда выводы элемента нумеруют цифрами.
Фоторезистор иллюстрируется прямоугольной фигурой, заключенной в круг, к которой направляется пара стрел, обозначающих световые лучи. Остальные полупроводниковые изделия символизируются зачеркнутым косой чертой прямоугольником. Буква показывает, от какого параметра зависит сопротивление (t – температура, U – напряжение и так далее).
Важно! Несколько резисторных компонентов могут быть объединены в цепь параллельно или последовательно. В первом случае будет справедливым выражение: 1/R = 1/R1+ 1/R2 + … 1/Rn
Сопротивление такой композиции будет ниже, чем у элемента с самым низким номиналом. Во втором случае итоговый показатель для системы равен сумме сопротивлений всех входящих в нее элементов.
Как подобрать толщину фитиля?
- Для свечи большого диаметра (от 7 см) следует подбирать толстые фитили от 21 нити и более.
- Для средних свечей диаметром 3-7 см – средней толщины фитили, от 12 до 21 нити.
- Для тонких свечей размером 1-3 см в диаметре – самые тонкие фитили, от 6 до 12 нитей.
К сожалению, все толщины проверяются экспериментально
При горении свечи важно все: обработка фитиля, его толщина, переплетение нитей и материал фитиля и свечи. Я в работе использую только 2 толщины фитиля — 6 и 18 нитей. Для очень толстых свечей просто складываю в 2 раза при обработке фитиля воском или парафином
Это позволяет сэкономить хотя бы на оптовой закупке фитиля
Для очень толстых свечей просто складываю в 2 раза при обработке фитиля воском или парафином. Это позволяет сэкономить хотя бы на оптовой закупке фитиля
Общая схема циркуляции воздуха
Забор воздуха в салон автомобиля осуществляется вентилятором, который может быть установлен в салоне либо за моторным щитом. Над электродвигателем располагается фильтр салона. При необходимости подогрева воздушный поток проходит через радиатор отопителя. Радиатор печки соединен с системой охлаждения автомобиля, поэтому при нагреве двигателя циркулирующая жидкость из системы охлаждения двигателя нагревает соты радиатора печки. Поэтому, проходя через соты, поток воздуха также становится теплым.
Когда в подогреве необходимости нет, заборный и очищенный фильтром воздух подается в салон напрямую из окружающей среды. Если автомобиль оборудован кондиционером, в режиме охлаждения перед попаданием в салон поток проходит испаритель, после чего холодный воздух направляется в дефлекторы (более подробно о принципе работы системы кондиционирования).
Воздушные заслонки
Перенаправление воздушных потоков для регулирования температуры осуществляется специальной заслонкой. Виды управления заслонкой:
- механическое. Привод заслонки посредством тяг и тросов соединяется напрямую с переключателем в салоне. В таком случае водитель, перемещая регулятор, вручную дозирует температуру поступающего воздуха;
- электронное. Заслонка оборудована сервоприводом. Электромотор изменяет положение заслонки, получая команды от блока управления. Такая схема применяется на автомобилях с климатическими установками. Водителю достаточно задать в бортовом компьютере желаемую температуру в салоне, после чего электронный блок управления, ориентируясь на температурные датчики, будет управлять сервоприводом воздушной заслонки.
От вентилятора печки в салон уходят каналы, по которым воздух может подаваться на лобовое стекло, в ноги либо через центральные дефлекторы. В зависимости от схемы работы, режимы могут быть как комбинированными, так и единичными, когда весь заборный воздух подается только в одну зону. Переключение режимов может осуществляться механически либо с помощью сервопривода и блока управления. Механический способ предполагает прямое соединение воздушных заслонок с переключателем на торпеде. Электропривод заслонок позволяется управлять ими нажатием клавиши, а также реализовать автоматическое управление электронным блоком системы кондиционирования салона.
Рециркуляция
В режиме рециркуляции закрывается основная воздушная заслонка, после чего вентилятор печки начинает забирать воздух из салона. Подобный режим работы позволяет заблокировать доступ неприятных запахов и загрязненного воздуха с улицы, если вы, к примеру, едете за автомобилем по пыльной гравийной дороге.
Виды привода рециркуляции:
- механический (описан выше);
- вакуумным. Заслонка соединена с вакуумной системой тормозов. При нажатии кнопки заслонка перемещается за счет вакуума и остается в закрытом положении до следующего нажатия кнопки;
- с помощью сервопривода. На некоторых автомобилях блок управления, ориентируясь на показания газоанализатора, может автоматически включать рециркуляцию при обнаружении высокого уровня концентрации выхлопных газов в заборном воздухе.
Почему так случилось?
Возможно, автоматические запросы принадлежат не вам, а другому пользователю, выходящему в сеть с одного с вами IP-адреса. Вам необходимо один раз ввести символы в форму, после чего мы запомним вас и сможем отличать от других пользователей, выходящих с данного IP. В этом случае страница с капчей не будет беспокоить вас довольно долго.
Возможно, в вашем браузере установлены дополнения, которые могут задавать автоматические запросы к поиску. В этом случае рекомендуем вам отключить их.
Также возможно, что ваш компьютер заражен вирусной программой, использующей его для сбора информации. Может быть, вам стоит проверить систему на наличие вирусов.
Если у вас возникли проблемы или вы хотите задать вопрос нашей службе поддержки, пожалуйста, воспользуйтесь формой обратной связи.
Принцип работы резистора печки автомобиля
Схема отопителя автомобиля
У обычной ВАЗовской печки четыре скорости. Как видим из рисунка скорость вращения мотора печки зависит от резисторов. Переключатель резисторов является переключателем скоростей отопителя. Для того, чтобы воздух, поступаемый в салон из печки был бы теплым, двигатель должен быть прогрет. Часто водители включают печку для охлаждения двигателя, в случае его перегрева.
Если не нужно нагревать салон автомобиля (в теплое время), то воздух нагнетается в салон напрямую, минуя радиатор печки, через фильтр отопителя. Для этого есть специальная заслонка, которая переключается из салона автомобиля водителем.
Зная схему подключения резистора печки, можно легко заменить это сопротивление, в случае выхода его из строя. Сделать это можно самостоятельно, а не платить большие деньги в автосервисе.
Основные причины плохой работы электропечи
Ваз 2110 печки схема
Прежде чем непосредственным образом приступить к поиску решения проблемы, необходимо уметь её быстро и эффективно выявлять. Вначале целесообразно рассмотреть общую схему строения печи. Итак, печь отопителя состоит из следующих компонентов:
- предохранителя монтажного блока;
- зажигательного замка;
- выключателя зажигания совместно с его разгрузочным реле;
- специального переключателя, который регулирует режим работы электродвигателя печи;
- дополнительно вмонтированного резистора;
- моторчика печки;
- обогрева заднего стекла автомобиля, которое содержит регулировочную клавишу обогревателя со световым индикатором;
- специального функционального элемента для обогревания стекла.
Принцип работы резистора простым языком
Все электронные приборы состоят из радиодеталей, которые делятся на два больших типа: активные и пассивные.
Активные усиливают электрические сигналы. Слабый сигнал на входе управляет мощным на выходе. В этом случае коэффициент усиления больше единицы.
Резистор относится к пассивному типу деталей, у которого коэффициент усиления меньше единицы.
В советское время резисторы именовали сопротивлениями. В наши дни эти детали называют резисторами. Сделано это потому, что все детали, применяемые в электронике, обладают сопротивлением. Чтобы не путаться, активные сопротивления назвали резисторами.
Все проводники имеют сопротивление, которое считается вредным, так как это приводит к нагреву элемента по которому течет ток. К тому же теряется электрическая мощность. Сопротивление резистора является полезным. Он нагревается и выделяет тепло. На этом принципе работают нагревательные печки и лампы, применяемые в быту.
Устройство и принцип работы
Конструкция постоянных резисторов довольно простая. Они состоят из керамической трубки, поверх которой намотана проволока или нанесена резистивная плёнка с определённым сопротивлением. На концы трубки вставлены металлические колпачки с припаянными выводами для поверхностного монтажа. Для защиты слоя используется лакокрасочное покрытие.
Устройство таких элементов можно понять из рисунка 2 ниже.
В большинстве моделей такая конструкция традиционно сохраняется, но сегодня существуют различные виды сопротивлений с использованием резистивного материала, устройство которых немного отличается от конструкции описанной выше.
Рис. 2. Строение резистора
Современную электронную аппаратуру наполняют платы, начинённые миниатюрными деталями. Поскольку тенденция к уменьшению размеров электронных приборов сохраняется, то требования к уменьшению габаритов коснулись и резисторов. Для этих целей идеально подходят непроволочные сопротивления. Они просты в изготовлении, а их номинальные мощности хорошо согласуются с параметрами маломощных цепей.
Казалось бы, что эра проволочных резисторов постепенно уходит в прошлое. Однако это не так. Спрос на проволочные сопротивления остаётся в тех сферах, где транзисторы с металлоплёночным или с композитным резистивным слоем не справляются с мощностями электрических цепей.
Для непроволочных резисторов используются следующие резистивные материалы:
Перечисленные вещества обладают высокими показателями удельного сопротивления. Это позволяет изготавливать электронные компоненты с очень маленькими корпусами, сохраняя при этом значения номинальных величин.
Размеры и формы корпусов, проволочных выводов современных резисторов соответствуют стандартам, разработанным для автоматической сборки печатных плат. С целью надёжного соединения выводов способом пайки, выводы деталей проходят процесс лужения.
Конструкция регулировочных (рис. 3) и подстроечных резисторов (рис.4) немного сложнее. Эти переменные транзисторы состоят из кольцевой резистивной пластины, по которой скользит бегунок. Перемещаясь по кругу, подвижный контакт изменяет расстояние между точками на резистивном слое, что приводит к изменению сопротивления.
Рис. 3. Регулировочные резисторы
Рис. 4. Подстроечные резисторы
Принцип действия.
Подбирая резисторы соответствующего номинала, можно изменять на участках цепей величины тока и напряжения. Например, увеличивая сопротивление последовательно включённого резистора на участке цепи, можно пропорционально уменьшить силу тока.
Условно резистор можно представить себе в виде узкого горлышка на участке трубки, по которой течёт некая жидкость (см. рис. 5). На выходе из горлышка давление будет ниже, чем на его входе. Примерно, то же самое происходит и с потоком заряженных частиц – чем больше сопротивление, тем слабее ток на выходе резистора.