Что такое TDI двигатель?

Фактор надёжности

Тот факт, что речь идёт о дизельном силовом агрегате с турбонаддувом заставляет некоторых автолюбителей усомниться в факторе надёжности этих двигателей. Якобы из-за турбины существенно снижается долговечность и срок службы агрегата.

Но в действительности всё обстоит несколько иначе. Именно за счёт системы турбонаддува моторы TDI обладают превосходными показателями мощности при небольшом рабочем объёме. Также это повлекло за собой заметное увеличение коэффициента полезного действия.

Рассматриваемые дизельные двигатели можно справедливо называть надёжными. Всё напрямую зависит от конкретных условий эксплуатации и непосредственно от отношения автовладельца к своему транспортному средству.

Чтобы надёжность двигателя действительно подвела, нужно регулярно заправлять машину на дешёвых автозаправочных станциях, где от дизельного горючего только цена и название. То есть именно качество солярки наиболее сильно влияет на работоспособность и исправность TDI.

Если же автомобилист будет выбирать хорошие заправки, заливать проверенное и качественное топливо, а также соблюдать стандартные предписания по своевременному обслуживанию, что нужно делать с абсолютно любым двигателем, то в определённых случаях жизнеспособность TDI сможет достичь 1 миллиона километров пробега. Причём это не фантазии и не показатели при абсолютно идеальных условиях.

Чтобы TDI не подводил, и автовладелец всегда мог рассчитывать на работоспособность и надёжность своего турбодизеля, достаточно знать 3 основных слабых места мотора:

  • низкокачественное топливо;
  • топливные форсунки;
  • турбокомпрессор.

Относительно качества солярки мы разобрались. Тут всё просто и очевидно. Заливайте хорошее топливо, и проблем будет минимум.

Что же касается такого слабого места как форсунки, их работоспособность и жизненный цикл самым непосредственным образом связан с первым пунктом, то есть с качеством горючего. Если заливать достойную солярку, поддерживая в хорошем общем состоянии топливную систему, форсунки смогут прослужить долго и надёжно. При необходимости их можно поменять. Процедура не самая сложная и не особо дорогая, если автовладелец решит обратиться за помощью в автосервис.

Отдельного внимания заслуживает турбина или турбокомпрессор, используемый на TDI для повышения мощности, производительности и эффективности. Турбина всегда выступает слабым местом на любом моторе с турбонагнетателем, поскольку её ресурс заметно меньше, чем ресурс самого двигателя.

Практика показывает, что в среднем турбина на TDI может верой и правдой прослужить от 120 до 160 тысяч километров. Затем требуется замена.

Учитывая скорость износа турбонагнетателя на многих двигателя конкурентов TDI, у разработки WAG очень достойные показатели. Этот ресурс выглядит вполне приемлемо и продолжительно как для турбомотора.

Тут важно понимать ещё один момент. Разработка двигателей и машин ведётся сейчас таким образом, что производители не рассчитывают на эксплуатацию в течение 15-20 лет

В Европе и США принято менять машины через 3-8 лет, поскольку они вырабатывают постепенно свой ресурс, ухудшаются показатели экологичности и пр. У нас же даже 10-15 лет эксплуатации считается нормой.

Тех же европейцев особо не беспокоит, что ресурс турбины составляет 160 тысяч километров. При достижении этого пробега машина отправляется в утиль или продаётся за рубеж. Купив такую машину и поменяв турбокомпрессор, на ней спокойно можно ездить ещё минимум 100-120 тысяч километров.

Уже понимая, что значит TDI, и что обозначают буквы в этой аббревиатуре, не лишним будет внимательнее изучить технические аспекты этих турбодизелей. И тогда вы сможете решить для себя, стоит ли покупать автомобили, под капотом которых стоят моторе, обозначенные буквами TDI.

Турбонаддув TDI: турбина с изменяемой геометрией

От эффективности работы турбоанддува TDI в значительной мере зависит не только динамика, но и экономичность наряду с экологичностью. Правильное наддува воздуха должно быть реализовано в максимально широком диапазоне. По этой причине на моторы TDI ставится турбокомпрессор с изменяемой геометрией турбины.

Ведущие производители турбин в мире используют следующие названия:

  • Турбина VGT (от англ. Variable Geometry Turbocharger, что означает турбокомпрессор с изменяемой геометрией). Производится BorgWarner.
  • Турбокомпрессор для дизеля VNT (от англ. Variable Nozzle Turbine, что означает турбина с переменным соплом). Это название использует фирма Garrett.

Турбонагнетатель с изменяемой геометрией отличается от обычной турбины тем, что имеет возможность регулировки как направления, так и величины потока отработавших газов. Данная особенность позволяет добиться наиболее подходящей частоты вращения турбины применительно к конкретному режиму работы ДВС. Производительность компрессора в этом случае сильно повышается.

Например, турбина VNT имеет в основе конструкции специальные направляющие лопатки. Дополнительно имеется механизм управления, а также отмечено наличие вакуумного привода. Указанные лопатки турбины производят поворот на необходимый угол вокруг свой оси, тем самым способны менять скорость и направление потока выхлопа. Это происходит благодаря изменению величины сечения канала.

Статья в тему: Впрыск воды в двигатель: как сделать самому

Механизм управления отвечает за поворот лопаток. Конструктивно механизм имеет кольцо и рычаг. На рычаг оказывает воздействие вакуумный привод, который управляет работой механизма посредством специальной тяги. Вакуумный привод управляется отдельным клапаном, который ограничивает давление наддува. Клапан является составным элементом электронной системы управления ДВС и срабатывает зависимо от показателей величины давления наддува. Эта величина измеряется отдельными датчиками:

  • температурный датчик, который измеряет температуру воздуха на впуске;
  • датчик давления наддува;

Другими словами, турбонаддув на TDI работает так, чтобы давление наддувочного воздуха всегда было оптимальным на разных оборотах двигателя. Фактически, турбина дозирует энергию потока отработавших газов.

  1. Как известно, на низких оборотах двигателя скорость потока (энергия) выхлопа является достаточно низкой. В таком режиме направляющие лопатки обычно закрыты, чем достигается минимальное сечение в канале. В результате прохождения через такой канал даже небольшое количество газов более эффективно крутит турбину, заставляя компрессорное колесо вращаться заметно быстрее. Получается, турбокомпрессор обеспечивает большую производительность на низких оборотах.
  2. Если водитель резко нажимает на газ, тогда у обычной турбины возникает эффект так называемой «турбоямы». Под турбоямой следует понимать задержку отклика на нажатие педали газа, то есть не моментальный прирост мощности, а подхват после небольшой паузы. Такая особенность обусловлена инерционностью системы турбонаддува, в результате чего потока газов оказывается недостаточно в момент резкого увеличения оборотов коленвала. В турбинах с изменяемой геометрией направляющие лопатки осуществляют свой поворот с определенной задержкой, что позволяет поддерживать нужное давление наддува и практически избавиться от турбоямы.
  3. При езде на высоких и приближенных к максимальным оборотах двигателя отработавшие газы имеют максимум энергии. Чтобы предотвратить создание избыточного давления наддува лопатки в турбинах с изменяемой геометрией поворачиваются так, чтобы мощный поток газов двигался по широкому каналу с наибольшим поперечным сечением.

Относительно малый ресурс турбокомпрессора связан с тем, что на TDI ставятся исключительно турбины с изменяемой геометрией. Турбокомпрессор во время работы двигателя раскручивается до 200 тыс. об/мин и постоянно взаимодействует с потоком разогретых до 1000 градусов по Цельсию выхлопных газов. Такие температурные и механические нагрузки, а также индивидуальные особенности конструкции указанных турбин сравнительно быстро приводят к необходимости ремонта или замены турбокомпрессора.

Система смазки

Двигатель 1.6 TDI оснащен датчиком уровня масла и двумя датчиками давления, один из которых мониторит снижение давления до 0,3-0,6 бара.

В поддоне обновленного двигателя 1.6 TDI находится модуль масляного и вакуумного насоса. Этот узел приводится зубчатым ремнем от коленвала. Натяжителя у этого ремня нет, к тому же он смазывается маслом. Ременной привод масляного насоса прикрыт крышкой, в которой находится передний сальник коленвала.

Масляный насос – шиберного типа, а его производительность постоянно регулируется. Управляющий клапан находится в блоке цилиндров слева, а рядом с ним – штуцер вакуумной магистрали.

Конструкция регулируемого масляного насоса буквально копирует масляный насос двигателей Renault, например H4B, который мы уже разбирали. Производительность этого насоса регулируется изменением объема камер всасывания и сжатия. Для этого корпус масляного насоса, внутри которого вращается ротор и шиберы, сделан подвижным. Его положение относительно ротора регулирует управляющий клапан и пружина. Таким образом регулируется объем и давление прокачиваемого масла. Давление масла регулируется ступенчато: до 2 бар на первой ступени и более 3,8 бар на второй ступени. Для того, чтобы двигатель не остался без достаточного давления смазки из-за проблем с управляющим клапаном, вторую ступень давления обеспечивает сила пружины, а управляющий соленоидный клапан при этом отключается.

Помпа системы охлаждения

В системе охлаждения двигателя 1.6 TDI серии EA288 3 насоса. Основной насос системы охлаждения обновленного двигателя 1.6 TDI является отключаемым. Пока мотор не прогреется, циркуляция охлаждающей жидкости в рубашках охлаждения блока цилиндров и головки блока отсутствует. Помпа имеет классический механический привод. На самом деле, ее крыльчатка, посаженная на приводной вал, вращается постоянно. Для отключения крыльчатки на нее надвигается колпачок, который отсекает крыльчатку. Она продолжает вращаться, но не качает охлаждающую жидкость. Отсекающий колпачок перемещается поршеньком за счет давления жидкости в тот момент, когда электромагнитный клапан перекрывает обратный канал.

Эта управляемая помпа успела вызвать немало хлопот. Она нередко начинала выть из-за износа подшипника ротора. Также выяснилось, что отсекающий колпачок может заклинить в закрытом положении, после чего эта помпа не поддерживает циркуляцию антифриза. В продаже уже есть пассивные помпы с металлической крыльчаткой от хороших производителей. При отказе основной помпы обновленный мотор 1.6 TDI не рискует перегреться.

Дело в том, что пока двигатель не прогреется и пока неактивна основная помпа, циркуляция охлаждающей жидкости по малому контуру регулируется насосом отопителя салона. Таким образом, двигатель минимально охлаждается и присутствует возможность направлять часть тепла на отопление салона. И этот же электронасос поддерживает циркуляцию антифриза в блоке цилиндров и ГБЦ.

Основной термостат двигателя 1.6 TDI пассивный.

История и особенности конструкции 1.9 TDI

Этот мотор имеет 4 цилиндра, 8 клапанов, турбину. Предназначенный для небольших и среднеразмерных автомобилей концерна, 1.9 TDI оснащается разными системами впрыска: непосредственным или насос-форсунками.

За почти 20-летнюю историю выпуска, 1.9 TDI получил больше десятка модификаций с разными кодовыми обозначениями. Причем версий легендарного турдодизеля больше, чем вариантов форсировки. А сами двигатели с общим объемом и под общим названием 1.9 TDI различаются кардинально: система питания, тип турбины, сплав блока и головки цилиндров.

В зависимости от версии, мощность 1.9 TDI может составить 90, 110, 115, 130 и 150 л.с.

1,9-литровый турбодизель ставили на разные модели концерна VAG, причем версии, близкие к 90-сильномк «предку» — с ТНВД и простыми форсунками, обычной турбиной и без двухмассового маховика — сохранялись в производстве до 2009 года. Правда, последние годы выпуска их монтировали только на немногие бюджетные модели.

Устанавливали различные версии 1.9 TDI на:

  • Audi 80 — 1991-1994
  • Audi A3 (I, II, Sportback) — 1996-2010
  • Audi A4 (В4, В5, В6, В7) — 1995-2008
  • Audi A6 (C4, C5) — 1994-2005
  • VW Golf (III, IV, V, Plus) — 1993-2009
  • VW Polo — 2001-2009
  • VW Passat (В4, В5, В6) — 1993-2008
  • VW Sharan — 1995-2010
  • VW Touran — 2003-2010
  • Skoda Fabia (I, II) — 2000-2010
  • Skoda Octavia (I, II) — 1996-2010
  • Skoda Superb (I, II) — 2001-2010
  • Skoda Roomster — 2006-2010
  • Seat Alhambra — 1996-2010
  • Seat Altea — 2004-2010
  • Seat Ibiza (II, III, IV) — 1996-2009
  • Seat Leon (I, II) — 1999-2012

1.9 TDI (Turbodiesel Direct Injection) создавали на базе 1.9 TD. Новинка получила другую головку блока цилиндров и новую систему питания: непосредственный впрыск, который и позволил повысить эффективность агрегата.

Впервые установили 1.9 TDI на Ауди-80 в 1991 году. Это был не первый TDI на рынке, но именно с ним связана мировая известность дизельных агрегатов концерна VAG.

90-сильная модификация AHU с классическим ТНВД и турбиной с перепускным клапаном стала эталонной в своем классе: разгон до 100 км/ч менее чем за 15 с и топливный расход на уровне 5,5 л на 100 км пути. А еще — беспроблемный холодный пуск в версиях с системой прямого впрыска и надежность самой конструкции.

Спустя непродолжительное время после выпуска 90-сильной версии AHU, производитель поставил на конвейер 110-сильный 1.9 TDI под индексом AFN.

Конструктивно он такой же, как AHU, но в нем впервые применили турбину с изменяемой геометрией, что позволило повысить крутящий момент и мощность. Этот 1,9-литровый турбодизель VAG стал самым распространенным в линейке.

В 1998 году появляется третье поколение мотора — 1.9 TDI PD с измененной системой впрыска, где форсунки и ТНВД объединены в единый узел — насос-форсунку, что позволило улучшить производительность и еще сильнее снизить расход топливо (при возрастающих расходах на эксплуатацию агрегата). Этот агрегат получил внутренний индекс AHH.

Конструктивно, это старый добрый AHU с турбиной от AFN. В результате получился агрегат с более высоким крутящим моментом при той же мощности.

А затем в конце 1999 года производитель заменил обозначения моторов, и AFN стал AVG. Правда, выпуск его продолжился всего год.

Потому что в 2000 году VAG наладил пилотный выпуск версий 1.9 TDI с насос-форсунками вместо традиционных ТНВД. Такая модернизация позволила создавать экстремально высокое давление внутри топливной магистрали, что приводит к быстрому эффективному впрыску и повышает мощность и крутящий момент двигателя.

Замена датчика массового расхода воздуха на ВАЗ 2114

При появлении неисправности ДМРВ на автомобилях ВАЗ 2114 с инжекторным двигателем, симптомы могут быть самыми разными. Все может начаться постепенно с незначительного возрастания расхода топлива и заканчивая неустойчивой работой двигателя, плавающих оборотах и т.д. На личном примере с переднеприводным автомобилем, могу сказать, что у меня была проблема с этим датчиком. Сначала начал загораться значок инжектора, а потом стали сильно плавать обороты. При этом, расход топлива увеличился почти в два раза.

Такая ситуация продолжалась довольно долго, благо, что был бортовой компьютер и ошибки можно было сбросить, тем самым вернув состояние двигателя в норму. Но рано или поздно датчик пришлось менять. Для его замены понадобится минимум инструмента, а именно:

  • Крестовая отвертка
  • Ключ на 10, или головка с воротком

Для начала необходимо открыть капот и отключить минусовую клемму от аккумулятора, а затем отсоединить колодку с проводами от датчика, нажав на фиксатор снизу:

После этого крестовой отверткой ослабляем хомут, который стягивает толстый впускной патрубок, идущий от воздушного фильтра. Наглядно это представлено на фото ниже:

Теперь снимаем патрубок и слегка отводим его в сторону:

Далее можно приступать к отворачиванию двух болтов крепления ДМРВ к корпусу воздушного фильтра. Удобнее всего воспользоваться трещоточной рукояткой. Один болт виден хорошо на фото, а второй находится с нижней стороны, но доступ к нему вполне нормальный, открутить можно без проблем:

Классификации

По источнику энергии

Двигатели могут использовать следующие типы источников энергии:

  • электрические; постоянного тока (электродвигатель постоянного тока);
  • переменного тока (синхронные и асинхронные);

электростатические;
химические;
ядерные;
гравитационные;
пневматические;
гидравлические;
лазерные.

По типам движения

Получаемую энергию двигатели могут преобразовывать к следующим типам движения:

  • вращательное движение твёрдых тел;
  • поступательное движение твёрдых тел;
  • возвратно-поступательное движение твёрдых тел;
  • движение реактивной струи;
  • другие виды движения.

Электродвигатели, обеспечивающие поступательное и/или возвратно-поступательное движение твёрдого тела;

  • линейные;
  • индукционные;
  • пьезоэлектрические.

Некоторые типы электроракетных двигателей:

  • ионные двигатели;
  • стационарные плазменные двигатели;
  • двигатели с анодным слоем;
  • радиоионизационные двигатели;
  • коллоидные двигатели;
  • электромагнитные двигатели и др.

По устройству

Двигатели внешнего сгорания — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела:

  • поршневые паровые двигатели;
  • паровые турбины;
  • двигатели Стирлинга;
  • паровой двигатель.

Двигатели внутреннего сгорания — класс двигателей, у которых образование рабочего тела и подвод к нему тепла объединены в одном процессе и происходят в одном технологическом объёме:

  • двигатели с герметично запираемыми рабочими камерами (поршневые и роторные ДВС);
  • двигатели с камерами, откуда рабочее тело имеет свободный выход в атмосферу (газовые турбины).

По типу движения главного рабочего органа ДВС с запираемыми рабочими камерами делятся на ДВС с возвратно-поступательным движением (поршневые) (делятся на тронковые и крецкопфные) и ДВС с вращательным движением (роторные), которые по видам вращательного движения делятся на 7 различных типов конструкций. По типу поджига рабочей смеси ДВС с герметично запираемыми камерами делятся на двигатели с принудительным электрическим поджиганием (калильным или искровым) и двигатели с зажиганием рабочей смеси от сжатия (дизель).

По типу смесеобразования ДВС делятся на: с внешним смесеобразованием (карбюраторные) и с непосредственным впрыском топлива в цилиндры или впускной коллектор (инжекторные). По типу применяемого топлива различают ДВС работающие на бензине, сжиженном или сжатом природном газе, на спирте (метаноле) и пр.

Реактивные двигатели

Воздушно-реактивные двигатели:

  • прямоточные реактивные (ПВРД);
  • пульсирующие реактивные (ПуВРД);
  • газотурбинные двигатели: турбореактивные (ТРД);
  • двухконтурные (ТРДД);
  • турбовинтовые (ТВД);
  • турбовинтовентиляторные ТВВД;

Ракетные двигатели

  • жидкостные ракетные двигатели;
  • твердотопливные ракетные двигатели;
  • ядерные ракетные двигатели;
  • некоторые типы электроракетных двигателей.

По применению

В связи с принципиально различными требованиями к двигателю в зависимости от его назначения, двигатели идентичные по принципу действия, могут называться «корабельными», «авиационными», «автомобильными» и тому подобными.

Категория «Двигатели» в патентоведении одна из наиболее активно пополняемых. В год по всему миру подаётся от 20 до 50 заявок в этом классе. Часть из них отличаются принципиальной новизной, часть — новым соотношением известных элементов. Новые же по конструкции двигатели появляются очень редко.

2.7 и 3.0 TDI

Рейтинг: ★★★☆☆

Краткое описание:

— 6-цилиндровый;

— 24-клапанный;

— непосредственный впрыск Common Rail;

— турбонагнетатель;

— предназначен для автомобилей среднего класса и выше, внедорожников.

Двигатели 2.7 и 3.0 TDI V6 разработаны с нуля и со старым V6 2.5 TDI не имеют ничего общего. Это современные турбодизели с системой впрыска Common Rail и системой из трех цепей ГРМ, расположенных в неудобном месте – со стороны коробки передач. Эти двигатели обеспечивают фантастическую производительность и потребляют заметно меньше топлива, чем 2.5 TDI, при спокойных передвижениях.

3-литровый TDI дебютировал в 2004 году в модели Audi A8

Он вызвал восхищение у журналистов и клиентов, обративших внимание на фантастические динамические характеристики. Силовой агрегат имеет чугунный блок и цилиндры, разнесенные на угол 90 градусов. Помимо набора цепей ГРМ, приводящих в движение валы, имеется зубчатый ремень привода насоса высокого давления Common Rail, создающего давление в 1600 бар

Подача топлива в цилиндры осуществляется пьезоэлектрическими форсунками Bosch. Двигатель имел два интеркулера, расположенных по бокам. 2,7-литровый агрегат отличался уменьшенным на 8 мм ходом поршня. Все V6 TDI с Common Rail имеют DPF-фильтр

Помимо набора цепей ГРМ, приводящих в движение валы, имеется зубчатый ремень привода насоса высокого давления Common Rail, создающего давление в 1600 бар. Подача топлива в цилиндры осуществляется пьезоэлектрическими форсунками Bosch. Двигатель имел два интеркулера, расположенных по бокам. 2,7-литровый агрегат отличался уменьшенным на 8 мм ходом поршня. Все V6 TDI с Common Rail имеют DPF-фильтр.

Большинство представителей TDI с числом цилиндров более 6, например, 4.2 TDI и 6.0 TDI, получены путем увеличения количества цилиндров. Это не относится к 10-цилиндровому агрегату (известному по VW Touareg), который де-факто представляет собой объединение двух 2,5-литровых рядных «пятерок».

Эксплуатация и типичные неисправности

Технически сложный 3.0 TDI требует для любого ремонта много сил и средств. Здесь мы имеем дело с «набором оборудования», повышающим стоимость владения. К сожалению TDI CR V6 практически не способен пройти 300 000 км без ремонта. Зачастую серьезные проблемы начинают появляться уже после 150 000 км.

Привод ГРМ

Во многих автомобилях неприятности доставляет натяжитель цепи ГРМ. Это проявляется скрежетом при запуске. Тянуть с ремонтом не стоит. Комплексная замена ГРМ с новыми натяжителями обойдется в 2000-2500 долларов. К счастью, случаев перескока цепи немного, но если это случится, то потребуется капитальный ремонт двигателя.

Прогар поршней

Первые партии 3.0 TDI оснащались пьезоэлектрическими форсунками, которые быстро выходили из строя. Они обеспечивали нехватку топлива, подаваемого в цилиндры. В результате слишком бедная смесь приводила к росту температуры и прогару поршней.

Технические характеристики 2.7 TDI

Версии

2.7 TDI

2.7 TDI

2.7 TDI

Система питания

Common Rail

Common Rail

Common Rail

Рабочий объем

2698 см3

2698 см3

2698 см3

Цилиндры / клапаны

V6 / 24

V6 / 24

V6 / 24

Макс. мощность

180 л.с. / 3300

190 л.с. / 3500

204 л.с. / 3500

Макс. крутящий момент 

380 Нм / 1400-3500

400 Нм / 1400-3500

450 Нм / 1400-3500

Привод ГРМ

цепной

цепной

цепной

Технические характеристики 3.0 TDI

Версии

3.0 TDI

3.0 TDI

3.0 TDI

3.0 TDI

3.0 BiTDI

Система питания

Common Rail

Common Rail

Common Rail

Common Rail

Common Rail

Рабочий объем

2967 см3

2967 см3

2967 см3

2967 см3

2967 см3

Цилиндры / клапаны

V6 / 24

V6 / 24

V6 / 24

V6 / 24

V6 / 24

Макс. мощность

224 л.с. / 4000

233 л.с. / 4000

240 л.с. / 4000

245 л.с. / 4000

313 л.с. / 3900

Макс. крутящий момент 

450 Нм / 1400-3250

450 Нм / 1400-3250

500 Нм / 1400-3500

580 Нм / 1400-3250

650 Нм / 1450-2800

Привод ГРМ

цепной

цепной

цепной

цепной

цепной

Применение:

Audi A4 B7, B8 — с 11.2004;

Audi A5 – с 06.2007;

Audi A6 C6, C7 – с 05.2004;

Audi A7 – с 10.2010;

Audi A8 D3, D4 – с 01.2004;

Audi Q5/SQ5 – с 11.2008;

Audi Q7 – с 03.2006;

Porsche Cayenne I — 02.2009-06.2010;

Porsche Cayenne II – с 06.2010;

Volkswagen Phaeton – с 09.2004;

Volkswagen Touareg I — 11.2004-01.2010;

Volkswagen Touareg II – с 01.2010.

Заключение

Отличный выбор для тех, кому не приходится считаться с эксплуатационными расходами. Если вы покупаете дизель для того, чтобы экономить, то держитесь подальше от 3.0 TDI. Неплохой альтернативой станет бензиновый мотор V6 3.0 TSI.

Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий