Цикл Миллера-Аткинсона
Большую известность цикл Миллера-Аткинсона получил благодаря рекламным брошюрам компании Mazda. Маркетологи гордо заявляют, что инженерам удалось поднять степень сжатия двигателей модели Skyactive до 14 единиц. На самом деле речь идет о геометрической степени сжатия, а не о фактической.
Трюк заключается в том, что во время поднятия поршня на такте сжатия выпускные клапаны еще долгое время открытые, из-за чего часть свежего воздушного заряда выталкивается в выхлопной тракт. Поэтому фактическая степень близка к стандартным для бензиновых моторов 12 единицам. Увеличение термического КПД при этом достигается за счет более эффективного использования энергии расширяющихся газов на такте рабочего хода. За счет большего хода (увеличен диаметр кривошипа) газы дольше давят на поршень. Поэтому при сгорании одной и той же доли топлива, в сравнении с обычным циклом Отто, на коленчатый вал передается больший крутящий момент. Технология позволяет в режимах малых и средних нагрузок значительно уменьшить расход топлива и количество вредных выбросов.
Эффект и типичные соотношения
Желательна высокая степень сжатия, поскольку она позволяет двигателю извлекать больше механической энергии из данной массы топливовоздушной смеси из-за его более высокого теплового КПД . Это происходит потому, что двигатели внутреннего сгорания являются тепловыми двигателями , и более высокая степень сжатия позволяет достичь той же температуры сгорания с меньшим количеством топлива, обеспечивая при этом более длительный цикл расширения, создавая большую выходную механическую мощность и снижая температуру выхлопных газов.
Бензиновые двигатели
В бензиновых (бензиновых) двигателях, используемых в легковых автомобилях в течение последних 20 лет, степень сжатия обычно составляет от 8∶1 до 12∶1. Некоторые серийные двигатели использовали более высокую степень сжатия, в том числе:
- Автомобили 1955–1972 гг., Предназначенные для работы на высокооктановом этилированном бензине , обеспечивающем степень сжатия до 13∶1.
- Некоторые двигатели Mazda SkyActiv, выпускаемые с 2012 года, имеют степень сжатия до 14∶1. В двигателе SkyActiv эта степень сжатия достигается с помощью обычного неэтилированного бензина (95 RON в Соединенном Королевстве) за счет улучшенной очистки выхлопных газов (что обеспечивает как можно более низкую температуру цилиндра перед тактом впуска) в дополнение к прямому впрыску.
- Двигатель Toyota Dynamic Force имеет степень сжатия до 14∶1.
- Ferrari 458 Speciale 2014 года также имеет степень сжатия 14∶1.
Когда используется принудительная индукция (например, турбокомпрессор или нагнетатель ), степень сжатия часто ниже, чем у двигателей без наддува . Это происходит из-за того, что турбокомпрессор / нагнетатель уже сжал воздух перед его поступлением в цилиндры. Двигатели, использующие через обычно имеют более низкое давление наддува и / или степень сжатия, чем двигатели с поскольку впрыск топлива через порт вызывает совместный нагрев смеси воздуха и топлива, что приводит к детонации. И наоборот, двигатели с прямым впрыском могут работать с более высоким наддувом, потому что нагретый воздух не взорвется без топлива.
Более высокая степень сжатия может сделать бензиновые двигатели подверженными детонации (также известной как «детонация», «преждевременное зажигание» или «стук»), если используется топливо с более низким октановым числом. Это может снизить эффективность или повредить двигатель, если отсутствуют датчики детонации, изменяющие угол опережения зажигания.
Дизельные двигатели
Дизельные двигатели используют более высокие степени сжатия, чем бензиновые двигатели, потому что отсутствие свечи зажигания означает, что степень сжатия должна повышать температуру воздуха в цилиндре в достаточной степени для воспламенения дизеля с использованием воспламенения от сжатия . Степень сжатия часто составляет от 14 ± 1 до 23 ± 1 для дизельных двигателей с прямым впрыском и от 18 ± 1 до 23 ± 1 для дизельных двигателей с непрямым впрыском .
Другое топливо
Степень сжатия может быть выше в двигателях, работающих исключительно на сжиженном нефтяном газе (LPG или «пропановый автогаз») или на сжатом природном газе из-за более высокого октанового числа этих топлив.
В керосиновых двигателях обычно используется степень сжатия 6,5 или ниже. Бензиновый двигатель парафина версия Фергюсон TE20 трактора имела степень сжатия 4.5:1 для работы на тракторе испарения масла с октановым числом от 55 до 70 лет .
Двигатели для автоспорта
Двигатели для автоспорта часто работают на высокооктановом бензине и поэтому могут использовать более высокую степень сжатия. Например, двигатели для гонок на мотоциклах могут использовать степень сжатия до 14,7∶1, и обычно встречаются мотоциклы со степенью сжатия выше 12,0∶1, рассчитанные на топливо с октановым числом 86 или 87.
Этанол и метанол могут иметь значительно более высокие степени сжатия, чем бензин. Гоночные двигатели, работающие на метаноле и этаноле, часто имеют степень сжатия от 14∶1 до 16∶1.
Терминология
Чем отличается степень сжатия от компрессии?Чтобы понять различия между этими терминами, достаточно прочитать их определения. После этого будет проще понять в чем разница на практике. Итак, смотрим определения:
- Степень сжатия является величиной, которая характеризует соотношение объема до процесса сжатия и после него;
- Компрессию можно измерить. По сути, это давление, что образуется в цилиндре при максимальном сжатии.
Стандартно в диагностике используется именно компрессия, поскольку она показывает работоспособность мотора. Степень сжатия используется в качестве справочных данных, традиционно ею интересуются при подборе топлива для автомобиля. Среднестатистическому автолюбителю этот показатель не нужен на практике.
Как увеличить степень сжатия двигателя
Если необходимо увеличить данный показатель, используют несколько способов:
- расточка блока и установка поршней с большим диаметром;
- уменьшение объёма камеры сгорания путём удаления слоя металла в месте соединения ГБЦ.
Интересно, что лучше всех раскрыли потенциал степени сжатия ДВС японские производители. В то время как европейские автокомпании пошли путём усовершенствования гибридных моторов, японцам удалось увеличить ССД до 14 единиц и на бензиновых силовых агрегатах, применив изменяемую величину. Но как это возможно без детонационных моментов? Всё оказалось просто. Оказывается, нужно охладить камеру, где происходит возгорание. Тогда можно будет без опасения сжимать смесь. И вовсе не обязательно для этого использовать прохладный воздух: достаточно модернизировать систему выпуска.
Приём, давно известный ещё по гоночным движкам. Выпускные каналы меняются согласно схеме 4-2-1. Порции выхлопных газов здесь не мешаются, поочерёдно вылетают в трубу. Благодаря такой чёткой системе выхлопа, улучшается продувка цилиндров, где остаётся меньше горячих газов.
Однако для реализации данного метода нужно будет еще модернизировать газообмен, раскошелившись на фазовращатели обоих распредвалов. Вдобавок потребуется доработать некоторые моменты. К примеру, изменить длину поршневого хода посредством компьютерного вмешательства.
Применяется система изменяемого коэффициента на многих японских движках, например, для Inflniti. Способность автоматически менять этот показатель сжатия в зависимости от нагрузки позволяет значительно повышать КПД мотора, особенно турбированного. Каждая порция смеси сгорает при оптимальном на данный момент работы сжатии. Так, если нагрузки на мотор незначительные и смесь обеднённая, включается максимальное сжатие. И наоборот, в нагруженном режиме задействуется минимальная степень, так как бензина впрыскивается много и возможна детонация.
Курс на увеличение степени сжатия двигателя наблюдался и в середине 20 века в США. Основная масса американских двигателей, выпущенных в 70-е годы, находилась в пределах 11-13 единиц. Но работали они только на очень качественном, высокооктановом топливе, получаемом путём этилирования. После того как этилирование запретили, в серийных образцах ДВС наблюдалось снижение показателя сжатия.
На пальцах
Из теории тепловых машин, начало которой было положено в первой половине XIX века французским ученым и инженером Сади Карно, известно, что эффективность идеального термодинамического цикла (его термический КПД) увеличивается с ростом степени сжатия (в) рабочего тела. Влияние степени сжатия на эффективность реальных тепловых машин – автомобильных ДВС – не столь однозначное. Теоретически обоснованному, «беспредельному» повышению степени сжатия препятствуют одновременно растущие механические потери на трение и газообмен, тепловые и механические нагрузки на детали двигателя, особенности автомобильных топлив и ряд других. Поэтому применительно к ДВС (определенной конструкции) можно говорить об оптимальном значении степени сжатия, при которой достигается максимум эффективного КПД, отвечающего за топливную экономичность и высокие мощностные характеристики. Точнее, о диапазоне оптимальных величин в, поскольку на разных режимах работы двигателя степень воздействия ограничивающих факторов различна и наиболее эффективная работа может достигаться при разных степенях сжатия.
Возьмем, к примеру, атмосферные искровые двигатели с внешним смесеобразованием. Исследования показывают, что оптимальная степень сжатия для таких моторов лежит в пределах 13-15. Дальнейшее увеличение в не приводит к заметному улучшению показателей двигателя из-за роста механических потерь. В то же время этот параметр у современных бензиновых двигателей обычно составляет величину порядка 10, т.е. существенно меньше оптимальной. Причина –стремление избежать детонации, опасность которой возникает прежде всего на режимах полной нагрузки, при высоких значениях давления и температуры в камере сгорания. Известно, что двигатель городского автомобиля работает с полностью открытым дросселем не более 10% времени эксплуатации. Это означает, что большую его часть он не добирает в мощности и неэкономно расходует топливо. Будь степень сжатия регулируемой, на режимах холостого хода и частичных нагрузок двигатель мог бы работать с оптимальной в, и только на мощностных режимах она уменьшалась бы до безопасного уровня. Подсчитано, что эта мера позволила бы снизить потребление бензина примерно на 10%
Не очень много, но и не мало, если принять во внимание огромное количество эксплуатируемых «бензиномобилей». Суммарная экономия нефти и сокращение выбросов в атмосферу были бы весьма ощутимыми
Переменная степень сжатия сослужила бы добрую службу и дизельным двигателям. Современные дизели, большинство которых турбированные, также имеют степень сжатия, отличную от оптимальной. При конструировании дизелей ее выбирают из условия обеспечения устойчивого холодного пуска двигателя. В зависимости от конструкции мотора в может принимать значения от 16 до 24, что выше оптимума. Излишне высокая степень сжатия, обусловленная приемлемыми пусковыми характеристиками, препятствует увеличению давления наддува, т.е. повышению удельной мощности дизелей. Одно из следствий высокой степени сжатия – большое максимальное давление в камере сгорания. При наддуве оно еще больше возрастает, что грозит превышением допустимых нагрузок на детали двигателя, снижением его ресурса и даже разрушением. Возможность гибко регулировать степень сжатия турбодизелей позволила бы без проблем запускать двигатель при высокой в, а на мощностных режимах снижать ее вплоть до 10-11, одновременно увеличивая давление наддува. Так можно значительно повысить мощность, не опасаясь превысить предельное давление сгорания.
Отмеченные преимущества, которые сулят возможность регулирования степени сжатия, что называется, лежат на поверхности. Но все это цветочки, ягодки – впереди.
Факторы, влияющие на показатель политропы сжатия
Среднее значение показателя политропы сжатия n1 зависит от конструкции двигателя и режима его работы. При одинаковой средней скорости движения поршня в двигателях с большими линейными размерами показатель n1 будет больше, так как у этих двигателей меньше относительная площадь соприкосновения единицы объема заряда со стенками цилиндра. Поэтому относительный отвод тепла в больших двигателях — меньше, что выражается в более высоком показателе n1.
У двигателей с разделенными камерами сгорания относительная площадь поверхности теплообмена больше, чем у двигателей с камерами неразделенными. Интенсивный теплообмен между зарядом и стенками цилиндра в период пуска приводит к снижению n1 и ухудшению пусковых качеств. При снижении n1 уменьшаются параметры конца сжатия Pс, Tс температура в цилиндре может не достичь уровня, требуемого для самовоспламенения топлива.
Поэтому в предкамерных и вихрекамерных двигателях обычно предусматриваются специальные устройства для пуска. В дальнейшем, после пуска двигателя, эти устройства отключаются, так как показатель n1 повышается за счет подвода тепла к заряду от раскаленной вставки внутри цилиндра.
Конструктивные мероприятия, направленные на снижение температуры цилиндро-поршневой группы — охлаждение поршней водой или маслом, уменьшение толщины стенок поршня, втулки, крышки, любые другие меры по интенсификации охлаждения — снижают величину среднего значения показателя n1, уменьшают параметры конца сжатия Pс и Tс. При этом снижается и термический КПД цикла. Однако основная цель упомянутых мероприятий — повышение надежности работы цилиндропоршневой группы.
С увеличением частоты вращения двигателя показатель n1 возрастает, так как уменьшается продолжительность теплообмена между зарядом и стенками цилиндра, процесс сжатия приближается к адиабатному. При снижении частоты вращения происходит обратное явление — показатель n1 уменьшается, снижаются давление Pс и температура Tс, что может привести к нарушению самовоспламенения топлива.
При снижении нагрузки двигателя (уменьшении среднего индикаторного давленияОпределение среднего индикаторного давления Pi) снижается температурный уровень стенок цилиндра, что приводит к увеличению теплоотвода от заряда к стенкам и к снижению показателя n1.
В условиях эксплуатации с понижением частоты вращения главного двигателя, работающего на винт, уменьшается и нагрузка. Оба фактора одновременно воздействуют в сторону интенсификации теплообмена при сжатии, что уменьшает показатель n1 и снижает параметры конца сжатия Pс и Tс. Особенно неблагоприятны последствия этого явления при не прогретом двигателе, когда возможна работа лишь на повышенных минимальных оборотах коленчатого вала. При снижении частоты вращения двигатель «глохнет».
При нормальных эксплуатационных условиях протечки свежего заряда через неплотности цилиндропоршневой группы при сжатии незначительны. Их влиянием на показатель n1 и параметры Pс, Tс можно пренебречь. Изменение степени сжатия также незначительно влияет на среднее значение политропы сжатия.
Экспериментальные исследования показали, что средние значения показателя политропы сжатия у различных двигателей находятся в пределах:
- n1 = 1,34 — 1,37 — у мапооборотных и среднеоборотных ДВС с охлаждаемыми поршнями;
- n1 = 1,38 — 1,42 — у высокооборотных ДВС с неохлаждаемыми поршнями.
Наибольшие значения n1 имеют двигатели, в цилиндре которых размещены специалные аккумуляторы тепла (раскаленные вставки). В этих двигателях показатель n1 может доходить до 1,8.
Среднее значение показателя n1 может быть найдено по известным параметрам работающего дизеля, исходя из формулы политропного процесса:
Pa /Pc = (Vc /Va )n1
Откуда:
n1 = 1g (Pa /Pc )/1g (Vc /Va ) = 1g(Pc /Pa)/1g ε
Текущие значения n1 можно найти, имея индикаторную диаграмму, снятую с работающего цилиндра. Разбив диаграмму на отдельные участки и определив давления на их границах, для каждого участка находится n1i:
η 1 i = 1 g ( P i + 1 / P i ) 1 g ( V i + 1 / V i )
Как увеличить компрессию двигателя?
Чтобы увеличить компрессию двигателя, необходимо найти причину неприятности, а только затем приступать к устранению проблемы. В настоящий день существует множество путей решения тех или иных неприятностей, связанных с плохой герметизацией камеры сгорания. Начнем с поршневой группы двигателя.
Если раньше, для понятия компрессии делался обязательный ремонт двигателя, а в частности, его расточка и замена поршней, то сейчас такой метод постепенно уходит в прошлое. В настоящее время существует большое количество всевозможных присадок, способных устранить дефекты без оперативного вмешательства. Они восполняют утраченные части металла и повышают вязкость масла в зоне повреждения. Таким образом, они не только устраняют неисправность, но и поднимают компрессию до оптимальных значений, которые предписаны заводом – изготовителем. Не смотря на всю простоту данного способа, использовать его рекомендуется только в том случае, когда вы на сто процентов уверены, что проблема заключается именно в дефектах деталей.
Если потеря компрессии связаны с закоксовыванием поршневых колец, то здесь необходимо применять иные методы. Для раскоксовки используется специальная автомобильная химия, однако существуют и старые методы, которыми успешно пользуются по сей день. Одним из таких методов является использование ацетона и керосина.
https://youtube.com/watch?v=5i0TuqPdtDo
Для начала будьте готовы к тому, что автомобилю придется стоять без движения около двух дней и желательно в проветриваемом гараже, чтобы избежать отравления ацетоном. Выверните свечи зажигания и залейте в отверстия 50 миллилитров ацетона с керосином, смешанные в соотношении 1:1. Далее поднимите одну из ведущих колес, включите четвертую скорость и проверните колесо на несколько оборотов. Делайте небольшие паузы между поворотами, чтобы дать смеси хорошенько обработать поверхности. Ни в коем случае не заворачивайте свечи зажигания!
Теперь оставьте автомобиль на 18 часов и по истечению данного времени приготовьтесь к запуску двигателя. Вначале необходимо провернуть стартер без свечей зажигания, чтобы выбросить остатки смеси. Далее полностью сливается масло из двигателя и откручивается поддон. Тщательно очистите его от накопившейся грязи и установите на место с новой прокладкой. После этого, залейте промывочную жидкость в картер двигателя и установите свечи зажигания на место. Запустите двигатель и дайте ему поработать в режиме холостого хода около 5 минут. Вполне возможно, что выхлоп будет не стандартного цвета, однако этого бояться не стоит, так как происходит естественная очистка мотора. После промывки двигателя остается только слить промывочное вещество, поменять масляный и воздушный фильтр, а также залить новое масло. Теперь компрессия должна обязательно восстановиться.
Зачем используется ПСС
Опытным автомобилистам наверняка знакомо понятие степени сжатия в двигателе. Но стоит уточнить, что это отношение объёма над рабочим поршнем двигателя, который опускается до своей нижней мёртвой точки, к объёму, когда этот поршень достигает уже верхней мёртвой точки.
Для бензиновых силовых установок стандартный показатель степени сжатия составляет от 8 до 14 единиц, а в случае с дизельными ДВС он увеличен до 18-23. Для каждого двигателя значение степени сжатия выступает как фиксированная величина, которую закладывают ещё на этапе создания и разработки мотора. В зависимости от того, какая степень сжатия характерна для того или иного силового агрегата, к двигателю будут предъявляться соответствующие требования по октановому или цетановому числу используемого топлива для бензиновых и дизельных двигателей соответственно. Дополнительно разработчики учитывают фактор наличия или отсутствия в моторе системы турбонаддува. То есть турбированный движок или просто атмосферный.
Если говорить простым языком, то степень сжатия определяет силу сжимания смеси топливо и воздуха в цилиндрах силового агрегата
И тут важно понимать, что при сильном сжатии топливовоздушная смесь способна лучше воспламеняться и полностью выгорать. Увеличивая этот параметр, коэффициент полезного действия ДВС будет расти, улучшится отдача движка, снизится расход топлива. Но у такого эффекта есть и обратная сторона
Она связана с возможным эффектом детонации. При нормальных условиях топливовоздушная смесь, сжимающаяся в цилиндрах, при воспламенении должна не взрываться, а именно гореть. Параллельно процесс воспламенения должен начинать и заканчиваться строго в определённые моменты времени
Но у такого эффекта есть и обратная сторона. Она связана с возможным эффектом детонации. При нормальных условиях топливовоздушная смесь, сжимающаяся в цилиндрах, при воспламенении должна не взрываться, а именно гореть. Параллельно процесс воспламенения должен начинать и заканчиваться строго в определённые моменты времени.
Топливо обладает особой характеристикой, которая называется детонационной устойчивостью. То есть это способность горючего сопротивляться эффекту детонации. Если степень сжатия чрезмерно повысить, бензин или дизель может сдетонировать, то есть взорваться, что происходит в условиях определённых режимов работы ДВС.
Результатом детонации становятся неконтролируемые процессы, при которых топливо в цилиндрах будет сгорать путём взрывов. Это приводит к ускоренному износу компонентов двигателя, создают ударных волн, существенному увеличению температуры ДВС со всеми вытекающими последствиями. В связи с этим создавать для мотора условия, при которых степень сжатия постоянно будет высокой, нельзя.
Единственным объективно эффективным решением сложившейся ситуации становится гибкое изменение параметров в зависимости от конкретного режима работы силовой установки. То есть изменение степени сжатия в тех или иных условиях. Это даёт реальную возможность повысить эффективность мотора, улучшить качество сжигания топливовоздушной смеси, повысить показатели экономичности и добиться лучшей эффективности. А поскольку повышение параметров сжатия происходит кратковременно и только в заданных режимах работы двигателя, никаких разрушительных последствий не наблюдается.
Преимущества моторов с изменяемой степенью сжатия выглядят очевидными. Но на практике создать подобный мотор было крайне сложно. Некоторым автокомпаниям в итоге это удалось. В их числе стоит отметить таких производителей как Infiniti, Peugeot, Saab, Volkswagen и пр.
Преимущества высокой степени сжатия
Двигатель внутреннего сгорания работает за счет воспламенения смеси воздуха и паров топлива. При воспламенении смесь расширяется и толкает поршень, который вращает коленвал. При большей степени сжатия интенсивность давления на поршень увеличивается, и зак один такт двигатель совершает больше полезной работы.
При этом подразумевается, что количество бензина в топливо-воздушной смеси остается неизменным, и за счет большего количества воздуха оно сгорает с более высоким КПД.
На современном этапе конструирования легковых автомобилей применение двигателей с низкой степенью сжатия практически прекратилось. Несмотря на то, что в них допустимо использовать низкооктановый и недорогой бензин А-80, их популярность равна нулю.
Дело в том, что современные потребители стремятся приобретать автомобили с большим количеством «лошадей под капотом», а с двигателей, рассчитанных на низкооктановый бензин (например, двигателя УАЗ 469, (который, правда, с измененной степенью сжатия и рядом модернизаций устанавливается в УАЗ Hunter), снять большую мощность невозможно по конструктивным причинам.
Порядок выполнения замеров
Перед тем как проверить компрессию двигателя, необходимо обеспечить полный заряд аккумуляторной батареи и исправную работу стартера. Иначе вы получите заниженные показатели и возьметесь за ремонт силового агрегата вместо продолжения диагностики и поиска других причин.
Существует несколько способов измерения давления – «на холодную», «на горячую», с закрытым и полностью открытым дросселем. Практика показывает, что наиболее точные результаты дает проверка на прогретом моторе, выполняемая согласно инструкции:
- Запустите двигатель и доведите температуру охлаждающей жидкости до 70 °С.
- Снимите высоковольтные провода и выверните все свечи, на дизеле – форсунки.
- Отключите форсунки от контроллера, отсоединив соответствующий разъем. Другой вариант – обесточить бензонасос, вытащив нужный предохранитель.
- Вкрутите насадку компрессометра в отверстие 1-го цилиндра, откройте дроссельную заслонку, нажав педаль газа, и проверните коленвал стартером 5–10 раз.
- Снимите показания и повторите операцию на остальных цилиндрах.
Если вы не хотите касаться электроники, то форсунки бензинового двигателя можете не отключать, на точность показаний это не повлияет, но при диагностике в масляный картер попадет небольшое количество горючего. Топливоподача на дизеле с механическим ТНВД отключается с помощью рычага отсечки.
По результатам измерений делаются следующие выводы:
- Если показатели замеров отличаются не более, чем на 1 Бар и близки к оптимальным, поршневая группа и клапаны исправны.
- Та же ситуация, но показатели близки к минимальному порогу. Ресурс силового агрегата практически исчерпан, можно ездить дальше и доливать масло, но готовиться к ремонту.
- Когда давление в одном из цилиндров на 2–3 Бар ниже остальных, сделайте повторную проверку, залив в свечное отверстие 5 мл моторной смазки. Компрессия выросла – значит, неисправна поршневая группа, поскольку масло уплотнило прилегание колец. Показания остались прежними – виноват прогоревший клапан.
Если давление во всех цилиндрах ниже нормы, придется делать капитальный ремонт. Тест с добавлением масла проводить бесполезно – двигатель все равно нужно разбирать.
Компрессия дизельного двигателя является основным показателем его исправности. Компрессией называют максимальное значение давления, создаваемого в цилиндре, при нахождении поршня в ВМТ (верхней мертвой точке). Конструктивные особенности дизельных движков таковы, что малейшее отклонение компрессии от нормы приводит к сбоям в работе силового агрегата.
Заниженный показатель давления влечет за собой полный отказ в работе цилиндра. При возникновении сбоев или запуске дизеля и в работающем моторе необходимо производить тщательную проверку компрессии. Диагностика давления производится согласно инструкции, приложенной к прибору.
Технические характеристики двигателей внутреннего сгорания содержат информацию о конструктивном параметре — степени сжатия, который является постоянной величиной. Степень сжатия дизельного двигателя представлена в виде соотношения объемов цилиндра при расположении поршня в НМТ (нижней мертвой точке) и в ВМТ соответственно.
Определить степень сжатия можно путем деления величины объема цилиндра на объем камеры сгорания. Результат, полученный после деления, указывает во сколько раз уменьшается объем топливовоздушной смеси при перемещении поршня из нижней точки в ВМТ.
Основной характеристикой работы дизеля является именно компрессия в цилиндрах, потому что только при достижении рабочего давления определенного значения температура сжатого воздуха повышается и происходит воспламенение топливовоздушной смеси.
Факторы влияющие на уменьшение компрессии
Пробег двигателя — фактическое состояние ЦПГ двигателя, это один из самых существенных факторов, которые влияют на состояние компрессии
Чем лучше притирка деталей в двигателе, тем меньше происходит утечки газов через возникшие неплотности и чем больше двигатель находится в эксплуатации, тем больше увеличивается выработка сопряженных деталей уменьшая компрессию ( не считая обкатку нового ДВС).
Агрессивное вождение — резко изменяющееся амплитуда нагрузки и оборотов на двигателе, которая связана с резким торможением или перегазовкой, способствует более быстрому износу ЦПГ.
Исправность сцепления, коробки передач, которые влияют на плавность хода и динамическую нагрузку в двигателе.
Качество смазочных материалов и топлива – очень важно использовать качественные «фирменные» масла и качественное топливо.
Запуск при низкой температуре воздуха, без прогрева масла, Застывшее масло не проходит по каналам уменьшая смазку трущихся поверхностей, что увеличивает износ.
Качество регулировки зажигания и впрыска топлива.
Что понимают под компрессией?
Одна из основных характеристик двигателя, приведенная в инструкции по эксплуатации автомобиля, – степень сжатия. Это безразмерный коэффициент, показывающий, во сколько раз сжимается топливовоздушная смесь перед воспламенением. Рассчитывается так: объем одного цилиндра (с учетом камеры сгорания) делится на величину хода поршня. Данный параметр является постоянным и меняется только при глубоком тюнинге мотора – расточке цилиндров, установке другого коленвала и так далее.
Степень сжатия несведущие автолюбители путают с компрессией – реальным давлением, создаваемым поршнями при вращении коленчатого вала стартером (200–300 об/мин). Характеристика меняется по мере износа деталей и измеряется в таких единицах:
- Атм (атмосфера);
- кгс/см 2 (килограмм-сила на сантиметр) = 0,97 Атм;
- МПа (мегапаскаль) = 9,9 Атм;
- Бар = 0,99 Атм.
Чтобы выявить неисправность главных элементов двигателя, нужно померить компрессию во всех цилиндрах и сопоставить полученные значения с оптимальной величиной. Почему в процессе эксплуатации мотора компрессия снижается:
- Рабочие поверхности колец, поршней и цилиндров истираются, зазор между ними увеличивается. Когда коленвал крутится стартером, поршень не успевает «накачать» давление в камере сгорания – часть воздуха уходит через щели в картер.
- Тарелки клапанов постепенно подгорают, неплотно садятся в седло и пропускают газы.
- «Подвисший» клапан либо полностью прогоревший поршень не позволяет создать давление в цилиндре.
- Царапины и задиры на цилиндрах также ведут к утечкам газов.
Указанные процессы аналогично протекают во время работы мотора: топливо не догорает, газы проникают в картер, а масло – в камеру сжигания. То есть, величина компрессии отражает реальную картину внутри двигателя.