Смазочная система дизельного мотора

Характеристики каждого вида топлива — октановое и цетановое число

Нередко можно услышать, как водители стремятся улучшить качества дизельного топлива, добавив в пропорции бензин. Особенно это актуально зимой, ведь зимние виды солярки стоят дороже из-за содержащихся в ней специальных присадок. Чтобы улучшить возгораемость смеси и сделать её менее густой, как раз и разбавляют солярку бензином — последствия такого действия могут принести не только пользу, но и вред. Почему так происходит? Потому что многие наши сограждане пытаются создать горючую смесь, которая не замерзала бы в зимние холодные месяцы.

Перед тем, как начать лить в бензин солярку зимой, нужно учесть, насколько важен для дизельного мотора момент зажигания. Если рабочая смесь начнет воспламеняться самостоятельно, возникает эффект так называемого «калильного зажигания». В отличие от понятия октанового числа, которое характеризует способность бензина к самовозгоранию, у солярки есть обратный показатель, который называется цетановое число.

Это примерно аналогичный критерий, только он показывает способность горючего к возгоранию в процессе его сжатия. Чем большим оно будет, тем быстрее оно будет вспыхивать и создавать полезную энергию. У самых лучших сортов солярки этот показатель может достигать 55 единиц. Поэтому, если добавить бензин в дизтопливо, даже зимой, то можно вызвать взаимодействие исключающих друг друга величин. При смешивании октан-число бензина в родном движке снижается, как и мощность мотора, зато возрастает детонация и сильнее начинают стучать клапана.

А что произойдёт при обратном процессе? Соответственно:

  • снизится показатель цетанового числа;
  • ухудшатся смазочные свойства горючего;
  • повысится время сгорания смеси;
  • уменьшится полезный КПД двигателя.

Система «сухого картера» двигателя: назначение и устройство

Итак, как уже было сказано выше, сухой картер является разновидностью систем смазки двигателя внутреннего сгорания. Сразу отметим, данная система активно используется в устройстве спортивных авто, некоторых внедорожников и определенных групп спецтехники.

Дело в том, что во время похождения резких поворотов на высокой скорости, при интенсивных оттормаживаниях и разгонах, на подъемах и спусках автомобиль кренится, раскачивается продольно и поперечно. При этом масло в поддоне привычной системы смазки с мокрым картером сильно расплескивается внутри поддона.

Система с сухим картером отличается тем, что масло находится не в картере, а в отдельном масляном баке. Такой подход исключает возможность вспенивания смазочной жидкости. К парам трения внутри двигателя смазку из бака подает нагнетающий насос, при этом стекающее в поддон масло немедленно выкачивается обратно в масляный бак при помощи откачивающего насоса. Получается, скопления масла в поддоне нет, то есть картер сухой.

Устройство системы сухого картера двигателя

Среди основных элементов следует выделить:

  • бак для масла;
  • нагнетающий насос;
  • откачивающий насос;
  • масляный радиатор;
  • датчик температуры масла;
  • датчик давления масла;
  • масляный термостат;
  • масляный фильтр;
  • редукционные и перепускные клапаны;

Масляный резервуар (бак) может иметь разную форму (круглый, прямоугольный). Внутри бака реализованы специальные перегородки. Они выполняют задачу успокоителей масла, чтобы минимизировать его колебания при раскачке и исключить возможность вспенивания.

Также бак имеет вентиляцию. Основная функция, как и у системы вентиляции картера, состоит в том, чтобы эффективно удалить из масляного бака лишний воздух и газы, которые попадают туда вместе с моторным маслом из поддона.

Прежде всего, это позволяет наилучшим образом распределить вес, что очень важно для спортивных авто в плане управляемости. Еще возможность выбора места установки позволяет разместить данный элемент системы так, чтобы улучшить охлаждение бака и понизить температуру масла. Нагнетающий насос отвечает за подачу масла в систему смазки под давлением, при этом осуществляется прокачка смазки через масляный фильтр

Нагнетающий насос отвечает за подачу масла в систему смазки под давлением, при этом осуществляется прокачка смазки через масляный фильтр.

Насос зачастую стоит ниже бака с маслом, что позволяет на входе реализовать постоянное давление с учетом силы тяжести. За регулировку давления в системе отвечают редукционные и перепускные клапаны.

Откачивающий насос служит для того, чтобы масло, которое стекает в поддон, сразу откачивалось и снова поступало в масляный бак. Производительность такого насоса намного выше, чем нагнетающего. Конструктивно такой насос имеет несколько секций в зависимости от типа и особенностей двигателя.

Если двигатель высокофорсированный, в каждой секции катера стоит по одной насосной секции. На V-образных моторах также присутствует дополнительная секция, чтобы отдельно откачивать масло, которое поступает к механизму газораспределения. Аналогичная секция стоит и на ДВС с турбонаддувом, чтобы откачивать масло, которое смазывает турбонагнетатель.

Данная конструкция обеспечивает возможность поставить необходимое количество секций на одном валу. Насосы расположены снаружи на двигателе, их легко снять для ремонта или замены. Еще можно встретить конструкцию, когда откачивающий и нагнетающий насосы реализованы по отдельности. Такой подход позволяет избежать повышения температуры масла в баке в результате поступления уже нагретой смазки из поддона.

Добавим, что еще одной особенностью откачивающего насоса является то, что он отличаются сниженной чувствительностью к наличию воздуха в масле, вспениванию смазочной жидкости и т.п. Другими словами, эти насосы могут нормально всасывать масляную пену без потери производительности, чего не скажешь об обычных маслонасосах в системах с мокрым картером.

Масляный радиатор является радиатором жидкостного охлаждения. Данный элемент располагается между нагнетающим насосом и мотором. Еще одним вариантом может быть расположение между откачивающим насосом и масляным резервуаром.

В двух словах, если двигатель холодный, термостат в это время закрыт, что не позволяет недостаточно нагретому маслу попадать в радиатор

Другими словами, сначала важно, чтобы смазка как можно быстрее прогрелась и разжижилась в холодном ДВС. В дальнейшем открытие термостата происходит только после нагрева моторного масла до заданной температуры

Система смазки дизельного двигателя ЗМЗ-5143.10, работа системы смазки

Система смазки дизельного двигателя ЗМЗ-5143.10 комбинированная, многофункциональная с подачей масла к трущимся поверхностям под давлением и разбрызгиванием. Кроме того система смазки используется для охлаждения поршней и подшипников турбокомпрессора, приводит в рабочее состояние гидроопоры и гидронатяжители.

Система смазки дизельного двигателя ЗМЗ-5143.10, циркуляция масла в системе.

Циркуляция масла в системе происходит следующим образом. Масляный насос засасывает масло из картера и по каналу в блоке подводит его к жидкостно-масляному теплообменнику, а затем к полнопоточному фильтру. В случае превышения давления до 4.5 кгс/см2, плунжер редукционного клапана масляного насоса открывает перепускное отверстие, через которое масло перетекает в зону всасывания масляного насоса.

После фильтра моторное масло поступает в главную масляную магистраль и через каналы в блоке смазывает коренные подшипники, подшипники промежуточного вала, верхний подшипник валика привода масляного насоса и подводится к гидронатяжителю цепи первой ступени привода распределительных валов. От коренных подшипников масло через внутренние каналы коленчатого вала смазывает шатунные подшипники.

Поршневые пальцы и верхние головки шатунов смазываются разбрызгиванием. От верхнего подшипника валика привода масляного насоса масло через поперечные сверления и внутреннюю полость валика подается для смазки опорной поверхности ведомой шестерни привода и нижнего подшипника валика. Шестерни привода маслонасоса смазываются струей масла через калиброванное отверстие в главной масляной магистрали.

Для охлаждения поршня предусмотрена масляная форсунка, в которую масло поступает под давлением. При давлении масла 1.2-1.5 кгс/см2 происходит открытие клапана форсунки и подача непрерывной струи масла на днище поршня.

Из главной масляной магистрали моторное масло через вертикальный канал в блоке поступает в головку цилиндров, смазывает опоры распределительных валов и подводится к гидронатяжителю цепи второй ступени привода распределительных валов, к гидроопорам и к датчику сигнализатора аварийного давления масла. Вытекая из зазоров и стекая в картер в передней части головки цилиндров, масло смазывает цепи, рычаги натяжных устройств со звездочками и звездочки привода распределительных валов.

Через специальные отверстия в блоке масло под давлением по нагнетательной трубке поступает в подшипниковый узел турбокомпрессора, а затем отработанное масло по шлангу стекает в масляный картер двигателя.

Контроль за системой смазки двигателя дизельного двигателя ЗМЗ-5143.10.

Контроль за давлением масла осуществляется датчиком указателя давления масла и указателем в комбинации приборов. Кроме того, система снабжена датчиком сигнализатора аварийного давления масла и сигнализатором аварийного давления масла. Сигнализатор аварийного давления масла загорается при давлении масла в системе 0.4-0.8 кгс/см2.

Емкость системы смазки 6.5 литра. Масло в двигатель заливается через маслозаливную горловину, расположенную на крышке клапанов и закрытую крышкой. Уровень масла контролируется по меткам П и 0 на стержне указателя уровня. При эксплуатации автомобиля по пересеченной местности уровень масла следует поддерживать вблизи метки П, не превышая ее. Слив масла производится через отверстие в картере закрытое пробкой.

auto.kombat.com.ua

Масляная система дизеля

Масляная система дизеля (рис. 37) служит для создания необходимого давления и подвода масла к трущимся деталям, отвода тепла от них, а также для удаления продуктов износа и частиц нагара, попадающих между трущимися поверхностями. Масляная система состоит из двух контуров: внутреннего и внешнего. Внутренний контур системы смазки дизелей представляет собой совокупность каналов и трубок, проходящих в деталях. Они обеспечивают подвод масла ко всем местам деталей, причем системы подвода масла к деталям у всех дизелей принципиально одинаковы. Затем, после смазки деталей, насос забирает масло из внутреннего контура, например, из поддона дизеля ЦЦ1М и по маслоотводящей трубе подает его во внешний контур.

В состав внешнего контура, обеспечивающего циркуляцию, очистку и охлаждение масла, забираемого из поддона дизеля и подводимого к его масляному коллектору, входят насосы, охладители масла, фильтры, контрольные и защитные приборы. Пройдя внешний контур, охлажденное и очищенное масло поступает в масляный коллектор дизеля, из которого оно по каналам опять попадает во внутренний контур и подается к коренным и шатунным подшипникам коленчатого вала и далее по каналам в шатунах — на охлаждение поршней и смазывание трущихся деталей цилиндро-поршневой группы. Для смазывания подшипников распределительного вала масло от коллектора подводится к трубкам. К рычагам толкателей масло подается по трубкам и далее по каналам в рычагах и штангах толкателей- на смазывание рычагов механизма газораспределения. От масляного коллектора масло поступает также к шестерням привода распределительного вала и к подшипникам турбокомпрессора. После смазывания деталей и сборочных единиц дизеля масло сливается обратно в поддон дизеля.

Запас масла на тепловозе ТЭМ2 (378 л) находится в системе и в маслосборнике картера дизеля. Масло заливают через горловину центробежного очистителя масла. Циркуляция масла по замкнутой системе обеспечивается масляным насосом, который забирает масло из маслосборника и подает его по трубе а к верхнему коллектору секций масловоздушных радиаторов 2 (рис. 37). Из нижнего коллектора радиаторов основная часть масла по трубе б поступает в пластинчато-щелевые фильтры (грубой очистки), а из них — в трубу (масляный коллектор), идущую внутри картера. Часть масла, примерно 15-20 %, из радиатора 2 поступает в фильтры с бумажными элементами 7 (тонкой очистки), откуда по трубе в сливается в маслосборник картера. Перед пуском дизеля масло забирается из картера маслоподкачивающим насосом 10 и по нагнетательной трубе г подается к трущимся деталям дизеля. Невозвратный клапан 8 не пропускает масло в насос 10 во время работы дизеля. Через кран 9(7) выпускается воздух при прокачивании масла перед пуском дизеля. Байпасный клапан 18 перепускает масло из подводящего трубопровода а в отводящий б, минуя секции 2 охлаждающего устройства, если разница между давлениями в этих трубах будет больше 0,165 МПа. Такой перепад давлений возможен при повышении вязкости масла, когда понижается температура или загрязнены секции охлаждающего устройства. Разгрузочный обратный клапан 6 выполняет две функции: пропускает некоторое количество масла через фильтры 7, если давление его выше 0,255 МПа, и не позволяет стекать загрязненному маслу из фильтров в картер после остановки дизеля. При повышении давления в трубе б свыше 0,295 МПа масло через регулирующий клапан 17 сливается в картер, минуя все фильтры. Вентиль 5(3) используют, когда масло холодное и его не следует пропускать через секции охлаждающего устройства.

Для отключения масляных секций на поддонах и отводящих трубах установлены вентили 5(1) и 5(2). Для выпуска воздуха из секций охлаждающего устройства секции 2 служит пробка 3. В случае необходимости масло из картера сливается по трубе, на которой установлен вентиль 5(5). На конец этой трубы дополнительно навернута заглушка. Масло из масляной системы сливают через вентиль 5(4). Трубопроводы, идущие от масляного насоса к секциям холодильника и от секции к пластинчато-щелевым фильтрам, соединены гибкими шлангами.

При выполнении ремонта масляной системы устраняют течь масла в соединениях трубопроводов. Регулирующие клапаны разбирают, негодные детали заменяют, после сборки регулируют на стенде. Независимо от состояния заменяют рукава, установленные на трубопроводе от масляного насоса к секции холодильника и от секции холодильника к пластинчатым фильтрам.

Возможные неполадки

Наиболее распространёнными неполадками, с которыми встречаются автомобилисты, является выход из строя деталей масляного насоса, фильтров (чаще – из-за износа), потеря герметичности узлов, нарушение регулировок или механические проблемы с редукционными клапанами.

Неисправности системы смазки двигателя, как правило, связаны с двумя группами неполадок.

  • Неполадки, которые приводят к понижению давления масла. Они могут быть результатом деформации, износа, повреждения масляного насоса, низкого уровня масла, засорения фильтра, выхода из строя датчика масла, заедания редукционного клапана.
  • Неполадки, которые приводят к повышенному расходу масла. Это результат выхода из строя газораспределительного механизма, износа прокладки насоса, засорения вентиляции картера, повреждения КШМ (кривошипно-шатунного механизма), ослабления масляного фильтра (или изначально ошибки при его закреплении).

Для выявления показателей давления используют сигнальные лампы на панели приборов транспортного средства. Пониженное давление масла – прямой сигнал, свидетельствующий о том, что на транспортном средстве нельзя ездить, и требуется ремонт или техническое обслуживание.Для определения расхода масла у современных автомобилей с автоматикой есть специальная контрольная лампа на панели приборов. Для определения проблемы у транспортных средств без такой лампы традиционно применяют щуп.

Износ и деформация

Если диагностика показывает, что детали износились, то есть отслужили свой срок эксплуатации, в большинстве случаев не стоит пытаться восстанавливать их. Её нужно менять. У прокладок, колпачков, сальников фильтров есть ресурс (указан в документации на детали), и, если их не заменить, количество проблем можно только увеличить. Например, несвоевременная замена фильтра приводит к критической концентрации вредных примесей, что может привести к деформации не только самого фильтра, но и корпуса. К деформации корпуса может привести, например, износ наружной поверхности втулок насоса.

Кстати, о деформации. Она может наступить гораздо раньше самого износа. Но, чтобы решить проблему, придётся не просто менять деформированную деталь, но и устранять причину, которая привела к этой неприятности.

Например, при механической деформации часто корень проблемы – в неисправностях иных узлов, взаимодействующих с ССД. В частности, деформация деталей системы смазки может быть ответной реакцией на выход из строя сайлентблоков, нарушение крепления ДВС. Впрочем, здесь важна именно комплексная диагностика. Сразу «обвинять» крепление ДВС или сайлентблоки не стоит. Например, в ситуации, когда деформированы детали клапанной группы ГРМ, часто виновато качество масла.

Профилактика неисправностей

Самая эффективная профилактика неисправностей – регулярное квалифицированное техобслуживание:

  • Систематическая замена масляного фильтра.
  • Систематическая замена моторного масла.

При это нужно четко знать сколько моторного масла требуется системе, учитывать объем системы смазки двигателя. Недостаточное количество масла – это создание нагрузки на детали, увеличение сухого трения, ускорение износа. Переизбыток масла – риск создать избыточное давление и вывести из строя сальники распредвала, коленвала, «убить» уплотнители и нарушить герметичность.

Важно! Вместе с заменой масляного насоса всегда важно не лениться заменять масляный фильтр. Важный элемент профилактики – это и грамотная эксплуатация ДВС. Особенно важно корректно запускать двигатель в морозное время

При низких температурах вязкость масла густеет, и путь масла к трущимся деталям ухудшается. Прогрев двигателя перед запуском в этой ситуации – необходимая операция

Особенно важно корректно запускать двигатель в морозное время. При низких температурах вязкость масла густеет, и путь масла к трущимся деталям ухудшается

Прогрев двигателя перед запуском в этой ситуации – необходимая операция

Важный элемент профилактики – это и грамотная эксплуатация ДВС

Особенно важно корректно запускать двигатель в морозное время. При низких температурах вязкость масла густеет, и путь масла к трущимся деталям ухудшается. Прогрев двигателя перед запуском в этой ситуации – необходимая операция

Прогрев двигателя перед запуском в этой ситуации – необходимая операция.

Своевременное техническое обслуживание и профилактика – это обеспечение смазочными веществами всех деталей, вступающих в трение, защита ДВС от перегрева, остаточных продуктов сгорания, гашение колебаний и подавление шумов.

Источник

Масляный радиатор охлаждения

С учетом того, что современные двигатели высокофорсированные и температура термостатирования также достаточно высокая, производители часто используют масляные радиаторы. Такой радиатор позволяет снизить нагрев двигателя при помощи масла.

Также наличие данного элемента позволяет более надежно защитить сам ДВС от износа. Дело в том, что масло также боится перегревов, как и металлические детали силового агрегата. Нужно помнить, что под воздействием высоких температур меняются свойства смазочной жидкости.

Становится понятно, что очень важным моментом является то, чтобы моторное масло не перегревалось. Другими словами, температура масла не должна выходить быть выше допустимой во время работы двигателя. Это одно из основных условий, чтобы смазка отработала заявленный срок службы, при этом двигатель был надежно защищен на протяжении всего этого срока.

Получается, дополнительное охлаждение масла становится не просто опцией, а необходимостью, особенно для высокофорсированных ДВС. Теперь рассмотрим сам радиатор масла (маслокулер).

Устройство масляного радиатора двигателя внутреннего сгорания и подбор

Итак, масляный радиатор состоит из теплоотводящих трубок и пластин, по которым происходит циркуляция разогретого масла. За счет этого смазочная жидкость охлаждается. При этом правильно подобранный и установленный масляный радиатор никак не влияет на общую эффективность работы системы смазки двигателя (нет потерь по давлению масла в двигателе).

Что касается самих радиаторов масла, существует несколько различных решений, которые отличаются по качеству материалов (теплопроводность, конструкция, размеры, форма и т.д.). Также масляный радиатор может быть с естественным или принудительным охлаждением.

  • В первом случае такой радиатор попросту обдувается встречными потоками воздуха при движении автомобиля.
  • Устройства с принудительной схемой охлаждения имеют вентилятор, который обдувает радиатор и лучше охлаждает масло независимо от того, с какой скоростью движется ТС, то есть насколько интенсивен поток встречного воздуха.

Для того чтобы увеличить поверхность охлаждения, на каждой трубке отдельно навивается спираль, которая является стальной лентой малой толщины. Также в отдельных конструкциях масляных радиаторов трубки могут проходить через охлаждающие пластины.

Указанные выше бачки разделены перегородками, на них наварены штуцеры, к которым подсоединяются маслоподводящая и маслоотводящая трубки. Также к конструкции приварены специальные крепления радиатора.

Также при замене масла в двигателе, отработку можно легко и быстро слить из масляного радиатора, что будет означать удаление старой смазки в максимально возможном объеме.

Отметим, что такой радиатор можно установить отдельно, то есть даже в тех случаях, когда автомобиль не был укомплектован данным решением изначально

При этом важно учитывать некоторые особенности, чтобы определиться, какой масляный радиатор лучше выбрать

Прежде всего, нужно уделить максимум внимания основным характеристикам:

  • Устройство должно быть изготовлено из качественных материалов. Если двигатель форсированный, желательно, чтобы радиатор имел эффективные решения для лучшей циркуляции масла через него.
  • Еще одним показателем является разность температур на входе и выходе из маслокулера, а также заявленное понижение температуры моторного масла при использовании того или иного радиатора.

Как правило, проходя по трубкам радиатора с естественным охлаждением (при помощи наружного воздуха), температура масла понижается, в среднем, на 10 градусов Цельсия.

Еще нужно учитывать, что зимой работа радиатора может приводить к тому, что температура масла может долго не повышаться, то есть смазка будет медленно прогреваться и разжижаться от нагрева. Простыми словами, нужно быть готовым к тому, что радиатор с наступлением холодов нужно будет перекрывать или снимать. При выборе устройства следует помнить про эту особенность.

Диагностика давления масла.

Самая дальняя точка от масляного насоса головка блока двигателя. Естественно  на коромыслах или на распревалу если он расположен в головке блока. Образуется самое низкое давлене. Но для нормальной работы двигателя оно должно присутствовать. Поэтому если даже просто открыть заливную пробку в клапанной крышке. Детали головки тщательно смазываются. При работающем двигателе будут видны брызги масла. Если их нет значит масло поступает с низким давлением. И уже даже по этому факту можно судить о том что в масляной системе неисправность. И уже можно судить о том почему загорелась лампа давления масла.

Но может быть и такое что неисправен датчик давления масла. Лампочка загорается . а детали головки блока смазываются обильно. Можно просто попробовать заменить датчик. Но будет более правильно, если измерить давление при помощи механического манометра.

Необходимо найти где находится датчик давления масла. Открутить его. На его место установить механический манометр. Он точно покажет давление масла в масляной системе. Давление масла ниже 0,2 Нм на холостых оборотах. Означает наличие неисправности.

Любую неисправность в двигателе необходимо начинать со снятия поддона. В первую очередь, конечно необходимо убедиться  в исправном состоянии маслоприёмника и мест соединения с насосом. Отсутствие трещин, грязи состояние уплотнений. Если все в порядке. Проверяются вкладыши коренных и шатунных шеек коленвала. Это можно сделать при помощи калиброванной пластиковой проволоки . Откручивается крышка коренных и шатунных подшипников ставится между шейкой коленвала  и вкладышем пластиковая проволока. Крышка закручивается с усилием, предназначенным для данной модели двигателя. Крышка снова снимается. И по ширине полученного пятна можно судить о величине  образовавшегося зазора. Он не должен превышать более 0,15 мм. Измерение это можно назвать условным. Потому что шейка коленвала изнашивается не равномерно. Износ образует овал. По поперечному сечению шейки вала. Поэтому данное измерение может дать приблизительное представление о износе. И  условно исключить или подтвердить причину неисправности.  Для того чтобы двигаться дальше в поиске неисправности.

Износ  распредвала и гидрокомпенсаторов.

Устройство системы смазки двигателя предполагает размещение распредвала в головке блока. Величина износа также проверяется при помощи пластиковой проволоки . Он не должен превышать  0,1 мм.

Если устройство системы смазки двигателя  предполагает размещение  рапредвала в блоке двигателя.  Можно попробовать  просунуть щуп между шейкой распредвала и втулкой. Если щуп походит, то износ недопустимый для дальнейшей работы. При наличии шатунов сделать это будет трудно. Но как вариант.

О потере масла в валах коромысел можно судить по износу втулок . Коромысла не должны болтаться влево вправо на валу

Стук гидрокомпенсаторов говорит о утечки давления в них.

Конечно более точная картина будет видна при полной разборке двигателя. И все подобные измерения не могут дать точного ответа на вопрос о износе двигателя. Единственное почему можно провести эти измерения, только  для того чтобы обнаружить причину не связанную с износом. Такую как нарушение уплотнений, трещины. Возможно масляный насос вышел из строя или заклинил редукционный клапан в одном положение. В результате чего  масло с магистрали высокого давления сбрасывается в обратку.

Устройство системы смазки двигателя имеет различные конструкции. Правильно определить причину неисправности можно . Зная конструкцию и схему. Но если двигатель прошел более 150 тыс км дело скорее всего в износе.

Смазочная система двигателя автомобиля

Смазочная система служит для уменьшения трения движущихся деталей двигателя, а также для их охлаждения при нагревании во время работы. С этой целью между трущимися поверхностями деталей вводится масло.

Моторные масла. В смазочных системах двигателей применяются только специальные масла, называемые моторными. По вязкостно-температурным свойствам моторные масла подразделяются согласно международной классификации SAE*, а по эксплуатационным свойствам — согласно классификации API. Числа в марке масла указывают его вязкость. Масла с латинской буквой «W» в обозначении относятся к зимним (от англ. winter— зима). В обозначении летних масел буква «W» отсутствует. Например, в средней полосе России летом следует использовать масло SAE 30, а зимой — SAE 15W.

Рис.10. Диапазоны температур для применения всесезонных моторных масел

Всесезонные масла имеют двойное обозначение, например SAE 15W-30. Этому маслу по вязкости соответствует отечественное масло М-53/12. Буква «з» в индексе означает, что масло загущено присадками.

Чем меньше первое число в марке, тем легче пуск двигателя в мороз. Чем больше второе число, тем выше вязкость масла в теплое время года и тем оно более предпочтительно для южных районов, атакже изношенных двигателей. На рис. 10 приведены диапазоны температур для применения всесезонных моторных масел.

По эксплуатационным качествам масла для бензиновых двигателей согласно классификации API разделяют на группы. В настоящее время используются масла групп SJ и SL (по классификации API), а по отечественной классификации — Г и Д.

По способу изготовления масла подразделяются на минеральные, полусинтетические и синтетические. Последние обладают лучшими характеристиками и более высоким качеством, но при этом они существенно дороже. Следует заметить, что применимость масла для данного двигателя определяется не способом его производства, а только вязкостно-температурными характеристиками и уровнем качества.

Внимание! В смазочной системе двигателя следует применять только моторные масла!

Недопустимо смешивание минеральных и синтетических масел, а также масел различных производителей, даже имеющих одинаковые вязкостно-температурные характеристики и уровни качества. Для доливки следует использовать только масло, аналогичное залитому в смазочную систему двигателя.

При эксплуатации автомобиля следует регулярно проверять уровень масла в двигателе, при необходимости доливать его и заменять строго в соответствии со сроками, указанными производителем автомобиля (двигателя) или изготовителем масла. Одновременно с маслом следует заменять масляный фильтр. Правильный выбор и своевременная замена масла в смазочной системе —залог долговечной безаварийной работы двигателя вашего автомобиля.

Рис.11. Принципиальная схема смазочной системы двигателя

Схема устройства и работы. В автомобильных двигателях применяется комбинированная смазочная система, при которой наиболее нагруженные детали смазываются под давлением, а остальные — разбрызгиванием. Смазочная система включает в себя поддон 13 (рис. 11) картера, масляный насос 1 и фильтр 10. Масло заливается через маслозаливную горловину в поддон картера. Уровень масла вкартере проверяется на неработающем двигателе при помощи маслоизмерительного стержня (щупа) 15. Уровень должен находиться между отметками «макс» и «мин». Некоторые двигатели оснащены электронными датчиками, сообщающими водителю о понижении уровня масла загоранием контрольной лампы на панели приборов.

При работе двигателя масло отбирается из поддона картера масляным насосом через маслоприемник 12 и под давлением подается к масляному фильтру. Очищенное в фильтре масло по каналам и главной масляной магистрали 3 в блоке цилиндров поступает к коренным подшипникам коленчатого вала, опорным шейкам распределительного вала 6 и толкателем 5 привода клапанов. От коренных подшипников масло поступает по каналам 9 к шатунным подшипникам и поршневым пальцам. Стекая со смазанных деталей, масло разбрызгивается коленчатым валом и смазывает стенки цилиндров, поршней и других деталей.

Давление масла в смазочной системе двигателя водитель контролирует по манометру или контрольной лампе (сигнализатору 7) красного цвета на панели приборов. Лампа загорается при аварийно низком давлении масла. Если это произошло при работе двигателя, то необходимо остановить двигатель и выяснить причину неисправности.

Масляный фильтр 10 очищает масло от механических примесей и продуктов изнашивания деталей двигателя. Он может быть неразборным или разборным со сменным фильтрующим элементом.

Вопрос37 Общее устройство и принцип работы четырехтактного двигателя внутреннего сгорания.

Двигатель
состоит из цилиндра 5 и картера 6, который
снизу закрыт поддоном 9 (рис. а). Внутри
цилиндра перемещается поршень 4 с
компрессионными (уплотнительными)
кольцами 2, имеющий форму стакана с
днищем в верхней части. Поршень через
поршневой палец 3 и шатун 14 связан с
коленчатым валом 8, который вращается
в коренных подшипниках, расположенных
в картере. Коленчатый вал состоит из
коренных шеек 13, щек 10 и шатунной шейки
11. Цилиндр, поршень, шатун и коленчатый
вал составляют так называемый
кривошипно-шатунный механизм, преобразующий
возвратно-поступательное движение
поршня во вращательное движение
коленчатого вала

.
Положение поршня в цилиндре, при котором
расстояние его от оси вала двигателя
достигает максимума, называется верхней
мертвой точкой (ВМТ). Нижней мертвой
точкой (НМТ) называют такое положение
поршня в цилиндре, при котором расстояние
его от оси вала двигателя достигает
минимума.

.
Объем цилиндра, образуемый поршнем при
его перемещении между мертвыми точками,
называется рабочим объемом цилиндра
Vh.

Рис
1.2. Схема
поршневого двигателя внутреннего
сгорания

Рабочий
объем двигателя представляет собой
произведение рабочего объема цилиндра
на число цилиндров.

Отношение
полного объема цилиндра Va к объему
камеры сгорания Vc называют степенью
сжатия

Рабочим
циклом называют совокупность
последовательных процессов, осуществляемых
с целью превращения тепловой энергии
топлива в механическую.

а)

б)

Рис.
1.3. Схемы рабочего цикла двигателей

Рабочий
цикл четырехтактного ДВС

Двигатель,
рабочий цикл которого осуществляется
за четыре такта, или за два оборота
коленчатого вала, называется четырехтактным.
Рабочий цикл в таком двигателе происходит
следующим образом. Рабочий цикл 4-тактного
карбюраторного ДВС совершается за 4
хода поршня (такта), т. е. за 2 оборота
коленчатого вала. При 1-м такте — впуске
поршень движется от верхней мёртвой
точки (в. м. т.) к нижней мёртвой точке
(н. м. т.). Впускной клапан при этом открыт
и горючая смесь из карбюратора поступает
в цилиндр. В течение 2-го такта — сжатия,
когда поршень движется от н. м. т. кв. м.
т., впускной и выпускной клапаны закрыты
и смесь сжимается до давления 0,8—2 Мн/м2
(8—20 кгс/см2). температура смеси в конце
сжатия составляет 200—400°C. В конце сжатия
смесь воспламеняется электрической
искрой и происходит сгорание топлива.
Сгорание имеет место при положении
поршня, близком к в. м. т. В конце сгорания
давление в цилиндре составляет 3—6 Мн/м2
(30—60 кгс/1см2), а температура 1600—2200°C.
3-й такт цикла —сгорание и расширение
называется рабочим ходом; в течение
этого такта происходит преобразование
тепла, полученного от сгорания топлива,
в механическую работу. 4-й такт — выпуск
происходит при движении поршня от н. м.
т. к в. м. т. при открытом выпускном
клапане. Отработавшие газы вытесняются
поршнем.

Рабочий
процесс четырехтактного дизельного
двигателя

включает следующие такты:

1.
Такт впуска. При движении поршня в
цилиндре образуется разряжение и через
воздушный фильтр в его полость поступает
атмосферный воздух. При этом впускной
клапан открыт.

2.
Такт сжатия. Поршень движется, сжимая
поступивший воздух. Для надежного
воспламенения топлива необходимо, чтобы
температура сжатого воздуха была выше
температуры самовоспламенения топлива.
Впускной и выпускной клапаны при этом
закрыты.

3.
Такт расширения (или рабочий ход).
Впрыснутое в конце такта сжатия топливо,
перемешиваясь с нагретым воздухом,
воспламеняется, начинается процесс
сгорания с быстрым повышением температуры
и давления. В этот момент оба клапана
закрыты. Под действием давления газов
поршень перемещается, тем самым совершая
полезную работу.

4.
Такт выпуска. Поршень перемещается
вверх, выталкивая в выпускной коллектор
отработанные газы, температура которых
снижается.

Рис.
1.4. Впуск
Рис 1.5. Сжатие

Рис.
1.6. Расширение Рис.
1.7. Выпуск

Поделитесь в социальных сетях:FacebookTwitterВКонтакте
Напишите комментарий